Skip to main content
Log in

Applications of a fast multipole Galerkin in boundary element method in linear elastostatics

  • Regular article
  • Published:
Computing and Visualization in Science

Abstact

Boundary element methods provide a powerful tool for solving boundary value problems of linear elastostatics, especially in complicated three–dimensional structures. In contrast to the standard Galerkin approach leading to dense stiffness matrices, in fast boundary element methods such as the fast multipole method the application of matrix–vector products can be realized with almost linear complexity. Since all boundary integral operators of linear elastostatics can be reduced to those of the Laplacian, the discretization of the corresponding single and double layer potentials of the Laplace operator has to be employed only. This technique results in a fast multipole method which is an efficient tool for the simulation of elastic stress fields in engineering and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bebendorf, M., Rjasanow, S.: Adaptive low–rank approximation of collocation matrices. Computing 70, 1–24 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Costabel, M., Stephan, E.P. Integral equations for transmission problems in linear elasticity. J. Integral Equations 2, 211–223 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fu, Y., Klimkowski, K.J. Rodin, G.J. Berger, E., Browne, J.C., Singer, J.K., van de Geijn, R.A., Vemaganti, K.S.: A fast solution method for three-dimensional many-particle problems of linear elasticity. Int. J. Numer. Methods Engrg. 42, 1215-1229 (1998)

    Article  MATH  Google Scholar 

  5. Gatica, G.N., Hsiao, G.C.: Boundary-field equation methods for a class of nonlinear problems. Pitman Research Notes in Mathematics Series. 331. Harlow: Longman House. New York, NY: Wiley (1995)

  6. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Simulation. The MIT Press (1987)

  8. Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Han, H.: The boundary integro–differential equations of three–dimensional Neumann problem in linear elasticity. Numer. Math. 68, 269–281 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hayami, K., Sauter, S.: A panel clustering method for 3-D elastostatics using spherical harmonics. In: Bertram, B. et al. (ed.): Integral methods in science and engineering, Proceedings of the 5th international conference, IMSE'98, Chapman Hall/CRC Res. Notes Math. 418, 179-184 (2000)

  11. Hsiao, G.C. Schnack, E., Wendland, W.L.: A hybrid coupled finite-boundary element method in elasticity. Comput. Methods Appl. Mech. Eng. 173, 287–316 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hsiao, G.C., Wendland, W.L.: Boundary element methods: foundation and error analysis. In: Stein, E., de Borst, R., Huges, T.J.R. (eds.). Encyclopedia of Computational Mechanics, Volume I: Fundamentals (John Wiley and Sons 2004), 339–373

  13. Kupradze, V.D.: Three–dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity North Holland Publishing Company, Amsterdam (1979)

  14. McLean, W., Steinbach, O.: Boundary element preconditioners for a hypersingular boundary integral equation on an interval. Adv. Comput. Math. 11, 271–286 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nabors, K., Korsmeyer, F.T. Leighton, F.T., White, J.: Preconditioned, adaptive, multipole-accelerated iterative methods for three-dimensional first-kind integral equations of potential theory. SIAM J. Sci. Comput. 15, 713–735 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nédélec, J.: Integral equations with non integrable kernels. Int. Eq. Operat. Th. 5, 562–572 (1982)

    Article  MATH  Google Scholar 

  17. Newman, J.N.: Distributions of sources and normal dipoles over a quadrilateral panel. J. Engrg. Math. 20, 113–126 (1986)

    Article  Google Scholar 

  18. Of, G.: A fast multipole boundary element method for the symmetric boundary integral formulation in linear elastostatics. In: Bathe, K.J. (ed.). Computational Fluid and Solid Mechanics (Elsevier 2003) 540–543 (2003)

  19. Of, G., Steinbach, O.: A fast multipole boundary element method for a modified hypersingular boundary element method. In: Wendland, W.L., Efendiev, M. (eds.). Analysis and Simulation of Multifield Problems (Springer, Heidelberg 2003) 163–169.

  20. Of, G., Steinbach, O., Wendland, W.L.: The fast multipole method for the symmetric boundary integral formulation. IMA J. Numer. Anal., published online

  21. Perez–Jorda, J.M. Yang, W.: A concise redefinition of the solid spherical harmonics and its use in the fast multipole methods. J. Chem. Phys. 104, 8003–8006 (1996)

    Article  Google Scholar 

  22. Popov, V., Power, H.: An O(N) Taylor series multipole boundary element method for three-dimensional elasticity problems. Eng. Anal. Bound. Elem. 25, 7–18 (2001)

    Article  MATH  Google Scholar 

  23. Sirtori, S.: General stress analysis method by means of integral equations and boundary elements. Meccanica 14, 210–218 (1979)

    Article  MATH  Google Scholar 

  24. Steinbach, O.: Artificial Multilevel Boundary Element Preconditioners. Proc. Appl. Math. Mech. 3, 539-542 (2003)

  25. Steinbach, O.: A robust boundary element method for nearly incompressible linear elasticity. Numer. Math. 95, 553–562 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Steinbach, O., Wendland, W.L.: The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9, 191–216 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. White, C.A., Head–Gordon, M.: Derivation and efficient implementation of the fast multipole method. J. Chem. Phys. 101, 6593–6605 (1994)

    Article  Google Scholar 

  28. Yoshida, K., Nishimura, N., Kobayashi, S.: Application of fast multipole Galerkin boundary integral equation method to elastic crack problems in 3D. J. Numer. Methods Eng. 50, 525–547 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Of.

Additional information

This work has been supported by the German Research Foundation DFG under the Grant SFB 404 Multifield Problems in Continuum Mechanics.

Dedicated to George C. Hsiao on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Of, G., Steinbach, O. & Wendland, W.L. Applications of a fast multipole Galerkin in boundary element method in linear elastostatics. Comput. Visual Sci. 8, 201–209 (2005). https://doi.org/10.1007/s00791-005-0010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-005-0010-9

Keywords

Navigation