Skip to main content
Log in

A low frequency elastodynamic fast multipole boundary element method in three dimensions

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a fast multipole boundary element method (FMBEM) for the 3-D elastodynamic boundary integral equation in the ‘low frequency’ regime. New compact recursion relations for the second-order Cartesian partial derivatives of the spherical basis functions are derived for the expansion of the elastodynamic fundamental solutions. Numerical solution is achieved via a novel combination of a nested outer–inner generalized minimum residual (GMRES) solver and a sparse approximate inverse preconditioner. Additionally translation stencils are newly applied to the elastodynamic FMBEM and an implementation of the 8, 4 and 2-box stencils is presented, which is shown to reduce the number of translations per octree level by up to \(60\,\%\). This combination of strategies converges 2–2.5 times faster than the standard GMRES solution of the FMBEM. Numerical examples demonstrate the algorithmic and memory complexities of the model, which are shown to be in good agreement with the theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Liu YJ, Mukherjee S, Nishimura N, Schanz M, Ye W, Sutradhar A, Pan E, Dumont NA, Frangi A, Saez A (2011) Recent advances and emerging applications of the boundary element method. Appl Mech Rev 64:1–38

    Article  Google Scholar 

  2. Cruse TA, Rizzo FJ (1968) A direct formulation and numerical solution of the general transient elastodynamic problem. I. J Math Anal Appl 22:244–259

    Article  MATH  Google Scholar 

  3. Cruse TA, Rizzo FJ (1968) A direct formulation and numerical solution of the general transient elastodynamic problem. II. J Math Anal Appl 22:341–355

    Article  MATH  Google Scholar 

  4. Beskos DE (1987) Boundary element methods in dynamic analysis. Appl Mech Rev 40:1–23

    Article  Google Scholar 

  5. Beskos DE (1997) Boundary element methods in dynamic analysis: part II. Appl Mech Rev 50:149–197

    Article  Google Scholar 

  6. Eringen AC, Suhubi ES (1975) Elastodynamics. Academic Press, New York

    MATH  Google Scholar 

  7. Beskos DE, Manolis GD (1987) Boundary element methods in elastodynamics. Allen and Unwin, London

    Google Scholar 

  8. Bonnet M (1995) Boundary integral equation methods for solids and fluids. Wiley, Chichester

    Google Scholar 

  9. Beskos DE (2003) Dynamic analysis of structures and structural systems. In: Beskos D, Maier G (eds) Boundary element advances in solid mechanics. Springer, New York

    Chapter  Google Scholar 

  10. Rokhlin V (1985) Rapid solution of integral equations of classical potential theory. J Comput Phys 60:187–207

    Article  MATH  MathSciNet  Google Scholar 

  11. Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(325):348

    MathSciNet  Google Scholar 

  12. Nishimura N (2002) Fast multipole accelerated boundary integral equation methods. Appl Mech Rev 55:299–324

    Article  Google Scholar 

  13. Chen YH, Chew WC, Zeroug S (1997) Fast multipole methods as an efficient solver for 2D elastic wave surface integral equations. Comput Mech 20:495–506

    Article  MATH  Google Scholar 

  14. Rokhlin V (1993) Diagonal forms of translation operators for the Helmholtz equation in three dimensions. Appl Comput Harmon Anal 1:82–93

    Article  MATH  MathSciNet  Google Scholar 

  15. Fukui T, Inoue K (1998) Fast multipole boundary element method in 2D elastodynamics (in Japanese). J Appl Mech JSCE 1:373–380

    Article  Google Scholar 

  16. Fujiwara H (1998) The fast multipole method for integral equations of seismic scattering problems. Geophys J Int 133:773–782

    Article  Google Scholar 

  17. Fujiwara H (2000) A fast multipole method for solving integral equations of three-dimensional topography and basin problems. Geophys J Int 140:198–210

    Article  Google Scholar 

  18. Yoshida K, Nishimura N, Kobayashi S (2000) Analysis of three dimensional scattering of elastic waves by a crack with fast multipole boundary integral equation method (in Japanese). J Appl Mech JSCE 3:143–150

    Article  Google Scholar 

  19. Shen L, Liu YJ (2007) An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation. Comput Mech 40:461–472

    Article  MATH  Google Scholar 

  20. Yoshida K, Nishimura N, Kobayashi S (2001) Applications of a diagonal form fast multipole BIEM to the analysis of three dimensional scattering of elastic waves by cracks. Trans JASCOME, J BEM 18:77–80

    Google Scholar 

  21. Isakari H, Yoshikawa H, Nishimura N (2010) A periodic FMM for elastodynamics in 3D and its applications to problems related to waves scattered by a doubly periodic layer of scatterers (in Japanese). J Appl Mech JSCE 13:169–178

    Google Scholar 

  22. Gumerov NA, Duraiswami R (2004) Fast multipole methods for the Helmholtz equation in three dimensions. Elsevier, Oxford

    Google Scholar 

  23. Chaillat S, Bonnet M, Semblat JF (2008) A multi-level fast multipole BEM for 3-D elastodynamics in the frequency domain. Comp Meth Appl Mech Eng 197:4233–4249

    Article  MATH  Google Scholar 

  24. Sanz JA, Bonnet M, Dominguez J (2008) Fast multipole method applied to 3-D frequency domain elastodynamics. Eng Anal Bound Elem 32:787–795

    Article  MATH  Google Scholar 

  25. Chaillat S, Semblat JF, Bonnet M (2012) A preconditioned 3-D multi-region fast multipole solver for seismic wave propagation in complex geometries. Commun Comput Phys 11:594–609

    MathSciNet  Google Scholar 

  26. Gumerov NA, Duraiswami R (2009) A broadband fast multipole accelerated boundary element method for the 3D Helmholtz equation. J Acoust Soc Am 125:191–205

    Article  Google Scholar 

  27. Chaillat S, Bonnet M, Semblat JF (2009) A new fast multi-domain BEM to model seismic wave propagation and amplification in 3-D geological structures. Geophys J Int 177:509–531

    Article  Google Scholar 

  28. Tong MS, Chew WC (2009) Multilevel fast multipole algorithm for elastic wave scattering by large three-dimensional objects. J Comput Phys 228:921–932

    Article  MATH  Google Scholar 

  29. Isakari H, Ninno K, Yoshikawa H, Nishimura N (2012) Calderon’s preconditioning for periodic fast multipole method for elastodynamics in 3D. Int J Numer Methods Eng 90:484–505

    Article  MATH  Google Scholar 

  30. Grasso E, Chaillat S, Bonnet M, Semblat JF (2012) Application of the multi-level time-harmonic fast multipole BEM to 3-D visco-elastodynamics. Eng Anal Bound Elem 36:744–758

    Article  MathSciNet  Google Scholar 

  31. Chaillat S, Bonnet M (2014) A new fast multipole formulation for the elastodynamic half-space Green’s tensor. J Comput Phys 258:787–808

    Article  MathSciNet  Google Scholar 

  32. Takahashi T (2012) A wideband fast multipole accelerated boundary integral equation method for time-harmonic elastodynamics in two dimensions. Int J Numer Methods Eng 91:531–551

    Article  MATH  Google Scholar 

  33. Chaillat S, Bonnet M (2013) Recent advances on the fast multipole accelerated boundary element method for 3D time-harmonic elastodynamics. Wave Motion 50:1090–1104

    Article  MathSciNet  Google Scholar 

  34. Benedetti I, Aliabadi MH (2010) A fast hierarchical dual boundary element method for three-dimensional elastodynamic crack problems. Int J Numer Methods Eng 84:1038–1067

    Article  MATH  Google Scholar 

  35. Xiao J, Ye W, Wen L (2013) Efficiency improvement of the frequency-domain BEM for rapid transient elastodynamic analysis. Comput Mech 52:903–912

    Article  MATH  Google Scholar 

  36. Ergül Ö, Gürel L (2010) Efficient solutions of metamaterial problems using a low-frequency multilevel fast multipole algorithm. PIER 108:81–99

    Article  Google Scholar 

  37. Chaillat S (2008) Fast multipole method for 3-D elastodynamic boundary integral equations. Application to seismic wave propagation. Dissertation, Ecole Polytechnique

  38. Gumerov NA, Duraiswami R (2003) Recursions for the computation of multipole translation and rotation coefficients for the 3-D Helmholtz equation. SIAM J Sci Comput 25:1344–1381

    Article  MATH  MathSciNet  Google Scholar 

  39. Gumerov NA, Duraiswami R (2008) Fast multipole methods on graphics processors. J Comput Phys 227:8290–8313

    Article  MATH  MathSciNet  Google Scholar 

  40. Liu J, Yu C, Chen Y, Li X (2008) Computational formulations for the fundamental solution and kernal functions of elasto-plastic FM-BEM in spherical coordinate system. ICIC-EL 2:207–212

    Google Scholar 

  41. Rathod HT, Nagaraja KV, Ventatesudu B, Ramesh NL (2004) Gauss Legendre quadrature over a triangle. J. Indian Inst. Sci 84:183–188

    MATH  MathSciNet  Google Scholar 

  42. Scuderi L (2008) On the computation of nearly singular Integrals in 3D BEM collocation. Int J Numer Methods Eng 74:1733–1770

    Article  MATH  MathSciNet  Google Scholar 

  43. Wu TW (2000) The Helmholtz integral equation. In: Wu T (ed) Boundary element acoustics: fundamentals and computer codes. WIT Press, Great Britain

    Google Scholar 

  44. Dangla P, Semblat JF, Xiao H, Delepine N (2005) A simple and efficient regularization method for 3D BEM: application to frequency-domain elastodynamics. B Seismol Soc Am 95:1916–1927

  45. Saad Y (1993) A flexible inner–outer preconditioned GMRES algorithm. SIAM J Sci Comput 14:461–469

    Article  MATH  MathSciNet  Google Scholar 

  46. Chen K, Harris PJ (2001) Efficient preconditioners for iterative solution of the boundary element equations for the three-dimensional Helmholtz equation. Appl Numer Math 36:475–489

    Article  MATH  MathSciNet  Google Scholar 

  47. Darbas M, Darrigrand E, Lafranche Y (2013) Combining analytic preconditioner and fast multipole method for the 3-D Helmholtz equation. J Comput Phys 236:289–316

    Article  MATH  MathSciNet  Google Scholar 

  48. Ying CF, Truell R (1956) Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid. J Appl Phys 27:1086–1097

    Article  MATH  MathSciNet  Google Scholar 

  49. Jones DS (1985) Boundary integrals in elastodynamics. IMA J Appl Math 34:83–97

    Article  MATH  MathSciNet  Google Scholar 

  50. Reinoso E, Wrobel LC, Power H (1997) Three-dimensional scattering of seismic waves from topographical structures. Soil Dyn Earthq Eng 16:41–61

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by an APA scholarship, funded by the Australian government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Wilkes.

Appendix: Recurrence relations for the second-order partial derivatives of S and R

Appendix: Recurrence relations for the second-order partial derivatives of S and R

The multipole expansion of the elastodynamic fundamental solutions (Eqs. 2 and 3) requires the evaluation of first and second-order Cartesian partial derivatives of the spherical basis functions. A direct evaluation of these terms leads to cumbersome expressions [40]. Alternatively, Gumerov and Duraiswami derived compact recurrence relations for the first-order partial derivatives of the S and R spherical basis functions via the following differential operators [38]:

$$\begin{aligned} \partial _z&\equiv \frac{\partial }{\partial z} \end{aligned}$$
(41)
$$\begin{aligned} \partial _{x+iy}&\equiv \frac{\partial }{\partial x} +i\frac{\partial }{\partial y} \end{aligned}$$
(42)
$$\begin{aligned} \partial _{x-iy}&\equiv \frac{\partial }{\partial x} -i\frac{\partial }{\partial y} \end{aligned}$$
(43)

which are exactly expressible in the spherical coordinate system [22]. The x and y first-order partial derivatives are then:

$$\begin{aligned} \frac{\partial }{\partial x}&= \frac{1}{2}\left[ \partial _{x+iy} + \partial _{x-iy}\right] \end{aligned}$$
(44)
$$\begin{aligned} \frac{\partial }{\partial y}&= - \frac{i}{2}\left[ \partial _{x+iy} - \partial _{x-iy}\right] \end{aligned}$$
(45)

Applying the above differential operators to the spherical basis functions (with \(F_n^m = S_n^m(\mathbf{r}), R_n^m(\mathbf{r})\) for arbitrary expansion vector \(\mathbf{r}\)) yields the following recurrence relations [22, 38]:

$$\begin{aligned} \partial _z F_n^m&= k\big [a_{n-1}^mF_{n-1}^m - a_{n}^mF_{n+1}^m\big ] \end{aligned}$$
(46)
$$\begin{aligned} \partial _{x+iy} F_n^m&= k\big [b_{n+1}^{-m-1}F_{n+1}^{m+1} - b_{n}^mF_{n-1}^{m+1}\big ] \end{aligned}$$
(47)
$$\begin{aligned} \partial _{x-iy} F_n^m&= k\big [b_{n+1}^{m-1}F_{n+1}^{m-1} - b_{n}^{-m}F_{n-1}^{m-1}\big ] \end{aligned}$$
(48)

with the coefficients \(a_n^m\) and \(b_n^m\) defined as:

$$\begin{aligned}&a_n^m = a_n^{|m|} = \left\{ \begin{array}{lll} &{} \sqrt{\frac{(n+1+|m|)(n+1-|m|)}{(2n+1)(2n+3)}}, &{} n \ge |m| \\ &{} 0, &{} n < |m| \end{array} \right. \end{aligned}$$
(49)
$$\begin{aligned}&b_n^m = \left\{ \begin{array}{lll} &{} \sqrt{\frac{(n-m+1)(n-m)}{(2n-1)(2n+1)}}, &{} m \ge 0 \\ &{} -\sqrt{\frac{(n-m+1)(n-m)}{(2n-1)(2n+1)}}, &{} m \le -1 \\ &{} 0, &{} |m| > n \end{array} \right. \end{aligned}$$
(50)

New recurrence relations for the second-order partial derivatives of S and R are derived using the following second-order differential operators, which again may be exactly expressed in the spherical coordinate system:

$$\begin{aligned} \partial _{z^2}&\equiv \frac{\partial ^2}{\partial z^2} \end{aligned}$$
(51)
$$\begin{aligned} \partial _{zx+izy}&\equiv \frac{\partial }{\partial z}\frac{\partial }{\partial x} + i \frac{\partial }{\partial z}\frac{\partial }{\partial y} \end{aligned}$$
(52)
$$\begin{aligned} \partial _{zx-izy}&\equiv \frac{\partial }{\partial z}\frac{\partial }{\partial x} - i \frac{\partial }{\partial z}\frac{\partial }{\partial y} \end{aligned}$$
(53)
$$\begin{aligned} \partial _{(x+iy)^2}&\equiv \frac{\partial ^2}{\partial x^2} + 2i\frac{\partial }{\partial x}\frac{\partial }{\partial y} -\frac{\partial ^2}{\partial y^2} \end{aligned}$$
(54)
$$\begin{aligned} \partial _{(x-iy)^2}&\equiv \frac{\partial ^2}{\partial x^2} - 2i\frac{\partial }{\partial x}\frac{\partial }{\partial y} -\frac{\partial ^2}{\partial y^2} \end{aligned}$$
(55)
$$\begin{aligned} \partial _{(x\pm iy)}&\equiv \frac{\partial ^2}{\partial x^2} + \frac{\partial ^2}{\partial y^2} \end{aligned}$$
(56)

where the unique second-order partial derivatives may be separated as:

$$\begin{aligned} \frac{\partial }{\partial z}\frac{\partial }{\partial x}&= \frac{1}{2}\big [\partial _{zx+izy} + \partial _{zx-izy} \big ] \end{aligned}$$
(57)
$$\begin{aligned} \frac{\partial }{\partial z}\frac{\partial }{\partial y}&= -\frac{i}{2}\big [\partial _{zx+izy} - \partial _{zx-izy} \big ] \end{aligned}$$
(58)
$$\begin{aligned} \frac{\partial ^2}{\partial x^2}&= \frac{1}{4}\big [\partial _{(x+iy)^2} + \partial _{(x-iy)^2} + 2\partial _{(x\pm iy)} \big ] \end{aligned}$$
(59)
$$\begin{aligned} \frac{\partial ^2}{\partial y^2}&= -\frac{1}{4}\big [\partial _{(x+iy)^2} + \partial _{(x-iy)^2} - 2\partial _{(x\pm iy)} \big ] \end{aligned}$$
(60)
$$\begin{aligned} \frac{\partial }{\partial x}\frac{\partial }{\partial y}&= -\frac{i}{4}\big [\partial _{(x+iy)^2} - \partial _{(x-iy)^2} \big ] \end{aligned}$$
(61)

The recurrence relations for the second-order differential operators (Eqs. 5156) for both spherical basis functions (\(F_n^m = S_n^m(\mathbf{r}), R_n^m(\mathbf{r})\)) can then be written as:

$$\begin{aligned} \partial _{z^2} F_n^m&= k^2\big [a_{n-1}^ma_{n-2}^mF_{n-2}^m - (a_{n-1}^m)^2F_{n}^m \nonumber \\&\quad -(a_n^m)^2F_{n}^m + a_{n}^ma_{n+1}^mF_{n+2}^m \big ] \end{aligned}$$
(62)
$$\begin{aligned} \partial _{zx+izy} F_n^m&= k^2\big [-a_{n-1}^mb_{n-1}^mF_{n-2}^{m+1} + a_{n-1}^mb_n^{-m-1}F_{n}^{m+1} \nonumber \\&\quad +a_n^mb_{n+1}^mF_{n}^{m+1} - a_{n}^mb_{n+2}^{-m-1}F_{n+2}^{m+1} \big ] \end{aligned}$$
(63)
$$\begin{aligned} \partial _{zx-izy} F_n^m&= k^2\big [-a_{n-1}^{m}b_{n-1}^{-m}F_{n-2}^{m-1} + a_{n-1}^{m}b_n^{m-1}F_{n}^{m-1} \nonumber \\&\quad +a_n^{m}b_{n+1}^{-m}F_{n}^{m-1} - a_{n}^mb_{n+2}^{m-1}F_{n+2}^{m-1} \big ] \end{aligned}$$
(64)
$$\begin{aligned} \partial _{(x+iy)^2} F_n^m&= k^2\big [b_{n}^{m}b_{n-1}^{m+1}F_{n-2}^{m+2} - b_{n}^{m}b_n^{-m-2}F_{n}^{m+2} \nonumber \\&\quad -b_{n+1}^{-m-1}b_{n+1}^{m+1}F_{n}^{m+2} + b_{n+1}^{-m-1}b_{n+2}^{-m-2}F_{n+2}^{m+2} \big ] \end{aligned}$$
(65)
$$\begin{aligned} \partial _{(x-iy)^2} F_n^m&= k^2\big [b_{n}^{-m}b_{n-1}^{-m+1}F_{n-2}^{m-2} - b_{n}^{-m}b_{n-1}^{m-2}F_{n}^{m-2} \nonumber \\&\quad -b_{n+1}^{m-1}b_{n+1}^{-m+1}F_{n}^{m-2} + b_{n+1}^{m-1}b_{n+2}^{m-2}F_{n+2}^{m-2} \big ] \end{aligned}$$
(66)
$$\begin{aligned} \partial _{(x\pm iy)} F_n^m&= k^2\big [b_{n}^{m}b_{n-1}^{-m-1}F_{n-2}^{m} - (b_{n}^{m})^2F_{n}^{m} \nonumber \\&\quad -(b_{n+1}^{-m-1})^2F_{n}^{m} + b_{n+1}^{-m-1}b_{n+2}^{m}F_{n+2}^{m} \big ] \end{aligned}$$
(67)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilkes, D.R., Duncan, A.J. A low frequency elastodynamic fast multipole boundary element method in three dimensions. Comput Mech 56, 829–848 (2015). https://doi.org/10.1007/s00466-015-1205-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1205-7

Keywords

Navigation