Skip to main content
Log in

Abnormal functional network centrality in drug-naïve boys with attention-deficit/hyperactivity disorder

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed neurodevelopmental disorder in childhood and is characterized by inattention, impulsivity, and hyperactivity. Observations of distributed functional abnormalities in ADHD suggest aberrant large-scale brain network connectivity. However, few studies have measured the voxel-wise network centrality of boys with ADHD, which captures the functional relationships of a given voxel within the entire connectivity matrix of the brain. Here, to examine the network patterns characterizing children with ADHD, we recruited 47 boys with ADHD and 21 matched control boys who underwent resting-state functional imaging scanning in a 3.0 T MRI unit. We measured voxel-wise network centrality, indexing local functional relationships across the entire brain connectome, termed degree centrality (DC). Then, we chose the brain regions with altered DC as seeds to examine the remote functional connectivity (FC) of brain regions. We found that boys with ADHD exhibited (1) decreased centrality in the left superior temporal gyrus (STG) and increased centrality in the left superior occipital lobe (SOL) and right inferior parietal lobe (IPL); (2) decreased FC between the STG and the putamen and thalamus, which belong to the cognitive cortico-striatal–thalamic–cortical (CSTC) loop, and increased FC between the STG and medial/superior frontal gyrus within the affective CSTC loop; and (3) decreased connectivity between the SOL and cuneus within the dorsal attention network. Our results demonstrated that patients with ADHD show a connectivity-based pathophysiological process in the cognitive and affective CSTC loops and attention network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kessler RC et al (2006) The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. Am J Psychiatry 163(4):716–723

    Article  PubMed  PubMed Central  Google Scholar 

  2. Polanczyk G et al (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164(6):942–948

    Article  PubMed  Google Scholar 

  3. Schneider H, Eisenberg D (2006) Who receives a diagnosis of attention-deficit/hyperactivity disorder in the United States elementary school population? Pediatrics 117(4):e601–e609

    Article  PubMed  Google Scholar 

  4. Singh I (2008) Beyond polemics: science and ethics of ADHD. Nat Rev Neurosci 9(12):957–964

    Article  CAS  PubMed  Google Scholar 

  5. Castellanos FX et al (2008) Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 63(3):332–337

    Article  PubMed  Google Scholar 

  6. Fair DA et al (2010) Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biol Psychiatry 68(12):1084–1091

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gallo EF, Posner J (2016) Moving towards causality in attention-deficit hyperactivity disorder: overview of neural and genetic mechanisms. Lancet Psychiatry 3(6):555–567

    Article  PubMed  PubMed Central  Google Scholar 

  8. Oldehinkel M et al (2016) Attention-deficit/hyperactivity disorder symptoms coincide with altered striatal connectivity. Biol Psychiatry Cogn Neurosci Neuroimaging 1(4):353–363

    Article  PubMed  PubMed Central  Google Scholar 

  9. Park BY et al (2016) Functional connectivity of child and adolescent attention deficit hyperactivity disorder patients: correlation with IQ. Front Hum Neurosci 10:565

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zuo XN et al (2012) Network centrality in the human functional connectome. Cereb Cortex 22(8):1862–1875

    Article  PubMed  Google Scholar 

  11. Tomasi D, Shokri-Kojori E, Volkow ND (2016) High-resolution functional connectivity density: hub locations, sensitivity, specificity, reproducibility, and reliability. Cereb Cortex 26(7):3249–3259

    Article  PubMed  Google Scholar 

  12. Buckner RL et al (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29(6):1860–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rubinov M et al (2009) Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp 30(2):403–416

    Article  PubMed  Google Scholar 

  14. Wang L et al (2015) The effects of antidepressant treatment on resting-state functional brain networks in patients with major depressive disorder. Hum Brain Mapp 36(2):768–778

    Article  PubMed  Google Scholar 

  15. Di Martino A et al (2013) Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biol Psychiatry 74(8):623–632

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lai MC et al (2015) Sex/gender differences and autism: setting the scene for future research. J Am Acad Child Adolesc Psychiatry 54(1):11–24

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a MATLAB toolbox for “Pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13

    PubMed  PubMed Central  Google Scholar 

  18. Song XW et al (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6(9):e25031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burgund ED et al (2002) The feasibility of a common stereotactic space for children and adults in fMRI studies of development. Neuroimage 17(1):184–200

    Article  PubMed  Google Scholar 

  20. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271

    Article  CAS  PubMed  Google Scholar 

  21. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  22. Shang CY et al (2016) Differential effects of methylphenidate and atomoxetine on intrinsic brain activity in children with attention deficit hyperactivity disorder. Psychol Med 46(15):3173–3185

    Article  CAS  PubMed  Google Scholar 

  23. Bachmann K et al (2018) Effects of mindfulness and psychoeducation on working memory in adult ADHD: a randomised, controlled fMRI study. Behav Res Ther 106:47–56

    Article  PubMed  Google Scholar 

  24. Beucke JC et al (2013) Abnormally high degree connectivity of the orbitofrontal cortex in obsessive–compulsive disorder. JAMA Psychiatry 70(6):619–629

    Article  PubMed  Google Scholar 

  25. Krause J (2008) SPECT and PET of the dopamine transporter in attention-deficit/hyperactivity disorder. Expert Rev Neurother 8(4):611–625

    Article  CAS  PubMed  Google Scholar 

  26. Fox MD et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678

    Article  CAS  PubMed  Google Scholar 

  27. Fassbender C et al (2009) A lack of default network suppression is linked to increased distractibility in ADHD. Brain Res 1273:114–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang S et al (2013) Altered neural circuits related to sustained attention and executive control in children with ADHD: an event-related fMRI study. Clin Neurophysiol 124(11):2181–2190

    Article  PubMed  Google Scholar 

  29. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215

    Article  CAS  PubMed  Google Scholar 

  30. Hopfinger JB, Buonocore MH, Mangun GR (2000) The neural mechanisms of top-down attentional control. Nat Neurosci 3(3):284–291

    Article  CAS  PubMed  Google Scholar 

  31. Maia TV, Cooney RE, Peterson BS (2008) The neural bases of obsessive–compulsive disorder in children and adults. Dev Psychopathol 20(4):1251–1283

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang Z et al (2011) The neural circuits that generate tics in Tourette’s syndrome. Am J Psychiatry 168(12):1326–1337

    Article  PubMed  PubMed Central  Google Scholar 

  33. Di Martino A et al (2008) Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 18(12):2735–2747

    Article  PubMed  Google Scholar 

  34. Lehericy S et al (2004) Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 55(4):522–529

    Article  PubMed  Google Scholar 

  35. Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7(6):464–476

    Article  CAS  PubMed  Google Scholar 

  36. Cardinal RN et al (2004) Limbic corticostriatal systems and delayed reinforcement. Ann N Y Acad Sci 1021:33–50

    Article  PubMed  Google Scholar 

  37. Marsh R, Maia TV, Peterson BS (2009) Functional disturbances within frontostriatal circuits across multiple childhood psychopathologies. Am J Psychiatry 166(6):664–674

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sonuga-Barke EJ et al (2008) Executive dysfunction and delay aversion in attention deficit hyperactivity disorder: nosologic and diagnostic implications. Child Adolesc Psychiatr Clin N Am 17(2):367–384, ix

    Article  PubMed  Google Scholar 

  39. Turner BM et al (2007) The cerebellum and emotional experience. Neuropsychologia 45(6):1331–1341

    Article  PubMed  Google Scholar 

  40. Castellanos FX, Proal E (2012) Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends Cogn Sci 16(1):17–26

    Article  PubMed  Google Scholar 

  41. Chelaru MI, Dragoi V (2008) Asymmetric synaptic depression in cortical networks. Cereb Cortex 18(4):771–788

    Article  PubMed  Google Scholar 

  42. Lee JS et al (2005) Regional cerebral blood flow in children with attention deficit hyperactivity disorder: comparison before and after methylphenidate treatment. Hum Brain Mapp 24(3):157–164

    Article  PubMed  Google Scholar 

  43. Yang Z et al (2018) Altered patterns of resting-state functional connectivity between the caudate and other brain regions in medication-naive children with attention deficit hyperactivity disorder. Clin Imaging 47:47–51

    Article  PubMed  Google Scholar 

  44. Mazaheri A et al (2010) Functional disconnection of frontal cortex and visual cortex in attention-deficit/hyperactivity disorder. Biol Psychiatry 67(7):617–623

    Article  PubMed  Google Scholar 

  45. Cho SC et al (2007) The relationship between regional cerebral blood flow and response to methylphenidate in children with attention-deficit hyperactivity disorder: comparison between non-responders to methylphenidate and responders. J Psychiatr Res 41(6):459–465

    Article  PubMed  Google Scholar 

  46. Villemonteix T et al (2015) Grey matter volume differences associated with gender in children with attention-deficit/hyperactivity disorder: a voxel-based morphometry study. Dev Cogn Neurosci 14:32–37

    Article  PubMed  Google Scholar 

  47. Dirlikov B et al (2015) Distinct frontal lobe morphology in girls and boys with ADHD. Neuroimage Clin 7:222–229

    Article  PubMed  Google Scholar 

  48. Valera EM et al (2010) Sex differences in the functional neuroanatomy of working memory in adults with ADHD. Am J Psychiatry 167:86–94

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation (Grant no. 81671669) and Youth Technology Grant of Sichuan Province (no. 2017JQ0001).

Author information

Authors and Affiliations

Authors

Contributions

XH and CY conceived and designed the experiments. CY, YL, HL, and HC recruited the patients and collected the data. MZ, XB, and YL performed the data analyses. MZ, CY, XB, and XH wrote the manuscript. HL, XH, and HC helped perform the analysis with constructive discussions. MZ and CY contributed to this study equally.

Corresponding author

Correspondence to Xiaoqi Huang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical statements

Approval for this study was granted by the local ethical committee of the First Hospital Affiliated to Wenzhou Medical University. All participants and their parents were fully informed about the purpose and procedures of this study and written informed consent was obtained from the parents.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Supplementary material 2 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Yang, C., Bu, X. et al. Abnormal functional network centrality in drug-naïve boys with attention-deficit/hyperactivity disorder. Eur Child Adolesc Psychiatry 28, 1321–1328 (2019). https://doi.org/10.1007/s00787-019-01297-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00787-019-01297-6

Keywords

Navigation