Skip to main content

Advertisement

Log in

Comparison of nasal cavity changes between the expander with differential opening and the fan-type expander: a secondary data analysis from an RCT

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Introduction

The aim of this study was to compare the nasal cavity skeletal changes between the expander with differential opening (EDO) and the fan-type expander (FE).

Methods

This study was a secondary analysis of a previous randomized clinical trial. Forty-eight patients with posterior crossbite were randomly allocated into two study groups. Twenty-four patients (11 male, 13 female) with a mean initial age of 7.6 ± 0.9 years were treated with rapid maxillary expansion (RME) using the EDO. Twenty-four patients (10 male, 14 female) with a mean initial age of 7.8 ± 0.9 years were treated with the FE. Cone-beam computed tomography (CBCT) was performed before treatment and 1 to 6 months after the active phase of RME. Using frontal CBCT slices passing at the level of maxillary permanent first molars and maxillary deciduous canines, the width of the nasal cavity was measured in the lower, middle and upper thirds. Nasal cavity height was also evaluated in both slices. Intergroup comparisons of interphase changes were performed using t or Mann-Whitney tests (P < 0.05).

Results

The two groups were similar regarding baseline data. EDO showed a greater transverse increase in the lower third of the nasal cavity in both canine (P = 0.007) and molar regions (P < 0.001). No intergroup difference was observed for changes in middle and upper widths and height of the nasal cavity.

Conclusions

Both expanders are effective in promoting an increase of the nasal cavity skeletal dimensions. The expander with differential opening produced a greater transverse increase in the lower third of the nasal cavity compared to the fan-type expander, both at the anterior and posterior regions of the maxilla.

Clinical relevance

EDO might be more beneficial to pediatric patients with oral breathing and obstructive sleep apnea compared to FE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dimberg L, Lennartsson B, Söderfeldt B, Bondemark L (2013) Malocclusions in children at 3 and 7 years of age: a longitudinal study. Eur J Orthod 35(1):131–137. https://doi.org/10.1093/ejo/cjr110

    Article  PubMed  Google Scholar 

  2. Haas AJ (1965) The treatment of maxillary deficiency by opening the midpalatal suture. Angle Orthod 35:200–217. https://doi.org/10.1043/0003-3219(1965)035<0200:Ttomdb>2.0.Co;2

    Article  PubMed  Google Scholar 

  3. Haas AJ (1961) Rapid expansion of the maxillary dental arch and nasal cavity by opening the midpalatal suture. Angle Orthod 31(2):73–90. https://doi.org/10.1043/0003-3219(1961)031<0073:REOTMD>2.0.CO;2

    Article  Google Scholar 

  4. da Silva Filho OG, Montes LA, Torelly LF (1995) Rapid maxillary expansion in the deciduous and mixed dentition evaluated through posteroanterior cephalometric analysis. Am J Orthod Dentofacial Orthop 107(3):268–275. https://doi.org/10.1016/s0889-5406(95)70142-7

    Article  PubMed  Google Scholar 

  5. Cappellette M Jr, Alves F, Nagai LHY, Fujita RR, Pignatari SSN (2017) Impact of rapid maxillary expansion on nasomaxillary complex volume in mouth-breathers. Dent Press J Orthod 22(3):79–88. https://doi.org/10.1590/2177-6709.22.3.079-088.oar

    Article  Google Scholar 

  6. Bazargani F, Feldmann I, Bondemark L (2013) Three-dimensional analysis of effects of rapid maxillary expansion on facial sutures and bones. Angle Orthod 83(6):1074–1082. https://doi.org/10.2319/020413-103.1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wertz RA (1970) Skeletal and dental changes accompanying rapid midpalatal suture opening. Am J Orthod 58(1):41–66. https://doi.org/10.1016/0002-9416(70)90127-2

    Article  PubMed  Google Scholar 

  8. Galeotti A, Festa P, Viarani V, D'Antò V, Sitzia E, Piga S, Pavone M (2018) Prevalence of malocclusion in children with obstructive sleep apnoea. Orthod Craniofac Res 21(4):242–247. https://doi.org/10.1111/ocr.12242

    Article  PubMed  Google Scholar 

  9. Melsen B, Attina L, Santuari M, Attina A (1987) Relationships between swallowing pattern, mode of respiration, and development of malocclusion. Angle Orthod 57(2):113–120. https://doi.org/10.1043/0003-3219(1987)057<0113:Rbspmo>2.0.Co;2

    Article  PubMed  Google Scholar 

  10. Behrents RG, Shelgikar AV, Conley RS, Flores-Mir C, Hans M, Levine M, McNamara JA, Palomo JM, Pliska B, Stockstill JW, Wise J, Murphy S, Nagel NJ, Hittner J (2019) Obstructive sleep apnea and orthodontics: An American Association of Orthodontists White Paper. Am J Orthod Dentofacial Orthop 156(1):13–28.e11. https://doi.org/10.1016/j.ajodo.2019.04.009

    Article  PubMed  Google Scholar 

  11. Iwasaki T, Takemoto Y, Inada E, Sato H, Suga H, Saitoh I, Kakuno E, Kanomi R, Yamasaki Y (2014) The effect of rapid maxillary expansion on pharyngeal airway pressure during inspiration evaluated using computational fluid dynamics. Int J Pediatr Otorhinolaryngol 78(8):1258–1264. https://doi.org/10.1016/j.ijporl.2014.05.004

    Article  PubMed  Google Scholar 

  12. Eichenberger M, Baumgartner S (2014) The impact of rapid palatal expansion on children's general health: a literature review. Eur J Paediatr Dent 15(1):67–71

    PubMed  Google Scholar 

  13. Camacho M, Chang ET, Song SA, Abdullatif J, Zaghi S, Pirelli P, Certal V, Guilleminault C (2017) Rapid maxillary expansion for pediatric obstructive sleep apnea: a systematic review and meta-analysis. Laryngoscope 127(7):1712–1719. https://doi.org/10.1002/lary.26352

    Article  PubMed  Google Scholar 

  14. Doruk C, Bicakci AA, Basciftci FA, Agar U, Babacan H (2004) A comparison of the effects of rapid maxillary expansion and fan-type rapid maxillary expansion on dentofacial structures. Angle Orthod 74(2):184–194. https://doi.org/10.1043/0003-3219(2004)074<0184:Acoteo>2.0.Co;2

    Article  PubMed  Google Scholar 

  15. Cozza P, De Toffol L, Mucedero M, Ballanti F (2003) Use of a modified butterfly expander to increase anterior arch length. J Clin Orthod 37(9):490–495

    PubMed  Google Scholar 

  16. Massaro C, Janson G, Miranda F, Aliaga-Del Castillo A, Pugliese F, Lauris JRP, Garib D (2021) Dental arch changes comparison between expander with differential opening and fan-type expander: a randomized controlled trial. Eur J Orthod 43(3):265–273. https://doi.org/10.1093/ejo/cjaa050

    Article  PubMed  Google Scholar 

  17. Gopalakrishnan U, Sridhar P (2017) Assessment of the dental and skeletal effects of fan-type rapid maxillary expansion screw and Hyrax screw on craniofacial structures. Contemp Clin Dent 8(1):64–70. https://doi.org/10.4103/0976-237x.205066

    Article  PubMed  PubMed Central  Google Scholar 

  18. Massaro C, Garib D, Cevidanes L, Janson G, Yatabe M, Lauris JRP, Ruellas AC (2021) Maxillary dentoskeletal outcomes of the expander with differential opening and the fan-type expander: a randomized controlled trial. Clin Oral Investig 25(9):5247–5256. https://doi.org/10.1007/s00784-021-03832-9

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cozza P, Giancotti A, Petrosino A (1999) Butterfly expander for use in the mixed dentition. J Clin Orthod 33(10):583–587

    PubMed  Google Scholar 

  20. Belluzzo R, Junior K, Lascala C, Vianna L (2012) Maxillary constriction: are there differences between anterior and posterior regions? Dent Press J Orthod 17:1–6. https://doi.org/10.1590/S2176-94512012000400009

    Article  Google Scholar 

  21. Garib DG, Garcia LC, Pereira V, Lauris RC, Yen S (2014) A rapid maxillary expander with differential opening. J Clin Orthod 48(7):430–435

    PubMed  Google Scholar 

  22. Alves ACM, Janson G, McNamara JA Jr, Lauris JRP, Garib DG (2020) Maxillary expander with differential opening vs Hyrax expander: a randomized clinical trial. Am J Orthod Dentofacial Orthop 157(1):7–18. https://doi.org/10.1016/j.ajodo.2019.07.010

    Article  PubMed  Google Scholar 

  23. Oenning AC, Jacobs R, Pauwels R, Stratis A, Hedesiu M, Salmon B (2018) Cone-beam CT in paediatric dentistry: DIMITRA project position statement. Pediatr Radiol 48(3):308–316. https://doi.org/10.1007/s00247-017-4012-9

    Article  PubMed  Google Scholar 

  24. Oenning AC, Jacobs R, Salmon B (2021) ALADAIP, beyond ALARA and towards personalized optimization for paediatric cone-beam CT. Int J Paediatr Dent 31(5):676–678. https://doi.org/10.1111/ipd.12797

    Article  PubMed  Google Scholar 

  25. Oenning AC, Pauwels R, Stratis A, De Faria VK, Tijskens E, De Grauwe A, Jacobs R, Salmon B (2019) Halve the dose while maintaining image quality in paediatric cone beam CT. Sci Rep 9(1):5521. https://doi.org/10.1038/s41598-019-41949-w

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moreira A, Menezes L, Roithmann R, Rizzatto S, Yen S, Enciso R, de Lima E, Azeredo F, Weissheimer A (2017) Immediate effects of rapid maxillary expansion on the nasal cavity using Haas-type and Hyrax-type expanders in CBCT. Med Clin Arch 1:1–5. https://doi.org/10.15761/MCA.1000117

    Article  Google Scholar 

  27. Weissheimer A, de Menezes LM, Mezomo M, Dias DM, de Lima EM, Rizzatto SM (2011) Immediate effects of rapid maxillary expansion with Haas-type and hyrax-type expanders: a randomized clinical trial. Am J Orthod Dentofacial Orthop 140(3):366–376. https://doi.org/10.1016/j.ajodo.2010.07.025

    Article  PubMed  Google Scholar 

  28. Parks ET (2014) Cone beam computed tomography for the nasal cavity and paranasal sinuses. Dent Clin N Am 58(3):627–651. https://doi.org/10.1016/j.cden.2014.04.003

    Article  PubMed  Google Scholar 

  29. Niu X, Madhan S, Cornelis MA, Cattaneo PM (2021) Novel three-dimensional methods to analyze the morphology of the nasal cavity and pharyngeal airway. Angle Orthod 91(3):320–328. https://doi.org/10.2319/070620-610.1

    Article  PubMed Central  Google Scholar 

  30. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15(2):155–163. https://doi.org/10.1016/j.jcm.2016.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pandis N (2021) Why using a paired t test to assess agreement is problematic? Am J Orthod Dentofacial Orthop 160(5):767–768. https://doi.org/10.1016/j.ajodo.2021.07.001

    Article  PubMed  Google Scholar 

  32. Pauwels R, Faruangsaeng T, Charoenkarn T, Ngonphloy N, Panmekiate S (2015) Effect of exposure parameters and voxel size on bone structure analysis in CBCT. Dentomaxillofac Radiol 44(8):20150078. https://doi.org/10.1259/dmfr.20150078

    Article  PubMed  PubMed Central  Google Scholar 

  33. Maspero C, Galbiati G, Del Rosso E, Farronato M, Giannini L (2019) RME: effects on the nasal septum. A CBCT evaluation. Eur J Paediatr Dent 20(2):123–126. https://doi.org/10.23804/ejpd.2019.20.02.08

    Article  PubMed  Google Scholar 

  34. Molen AD (2010) Considerations in the use of cone-beam computed tomography for buccal bone measurements. Am J Orthod Dentofacial Orthop 137(4 Suppl):S130–S135. https://doi.org/10.1016/j.ajodo.2010.01.015

    Article  PubMed  Google Scholar 

  35. Ballrick JW, Palomo JM, Ruch E, Amberman BD, Hans MG (2008) Image distortion and spatial resolution of a commercially available cone-beam computed tomography machine. Am J Orthod Dentofacial Orthop 134(4):573–582. https://doi.org/10.1016/j.ajodo.2007.11.025

    Article  PubMed  Google Scholar 

  36. Caldas LD, Takeshita WM, Machado AW, Bittencourt MAV (2020) Effect of rapid maxillary expansion on nasal cavity assessed with cone-beam computed tomography. Dent Press J Orthod 25(3):39–45. https://doi.org/10.1590/2177-6709.25.3.039-045.oar

    Article  Google Scholar 

  37. Cordasco G, Nucera R, Fastuca R, Matarese G, Lindauer SJ, Leone P, Manzo P, Martina R (2012) Effects of orthopedic maxillary expansion on nasal cavity size in growing subjects: a low dose computer tomography clinical trial. Int J Pediatr Otorhinolaryngol 76(11):1547–1551. https://doi.org/10.1016/j.ijporl.2012.07.008

    Article  PubMed  Google Scholar 

  38. Starnbach H, Bayne D, Cleall J, Subtelny JD (1966) Facioskeletal and dental changes resulting from rapid maxillary expansion. Angle Orthod 36(2):152–164. https://doi.org/10.1043/0003-3219(1966)036<0152:Fadcrf>2.0.Co;2

    Article  PubMed  Google Scholar 

  39. Pirelli P, Fiaschetti V, Fanucci E, Giancotti A, Condo R, Saccomanno S, Mampieri G (2021) Cone beam CT evaluation of skeletal and nasomaxillary complex volume changes after rapid maxillary expansion in OSA children. Sleep Med 86:81–89. https://doi.org/10.1016/j.sleep.2021.08.011

    Article  PubMed  Google Scholar 

  40. McNamara JA Jr, Lione R, Franchi L, Angelieri F, Cevidanes LH, Darendeliler MA, Cozza P (2015) The role of rapid maxillary expansion in the promotion of oral and general health. Prog Orthod 16:33. https://doi.org/10.1186/s40510-015-0105-x

    Article  PubMed  PubMed Central  Google Scholar 

  41. Compadretti GC, Tasca I, Bonetti GA (2006) Nasal airway measurements in children treated by rapid maxillary expansion. Am J Rhinol 20(4):385–393. https://doi.org/10.2500/ajr.2006.20.2881

    Article  PubMed  Google Scholar 

  42. Hershey HG, Stewart BL, Warren DW (1976) Changes in nasal airway resistance associated with rapid maxillary expansion. Am J Orthod 69(3):274–284. https://doi.org/10.1016/0002-9416(76)90076-2

    Article  PubMed  Google Scholar 

  43. Schütz-Fransson U, Kurol J (2008) Rapid maxillary expansion effects on nocturnal enuresis in children: a follow-up study. Angle Orthod 78(2):201–208. https://doi.org/10.2319/021407-71.1

    Article  PubMed  Google Scholar 

Download references

Funding

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Rodrigo Teixeira and Camila Massaro. The first draft of the manuscript was written by Rodrigo Teixeira, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rodrigo Teixeira.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Bioethics Committee of the Bauru Dental School, University of Sao Paulo (protocol number: 35403520.0.0000.5417).

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, R., Massaro, C. & Garib, D. Comparison of nasal cavity changes between the expander with differential opening and the fan-type expander: a secondary data analysis from an RCT. Clin Oral Invest 27, 5999–6006 (2023). https://doi.org/10.1007/s00784-023-05213-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-05213-w

Keywords

Navigation