Skip to main content

Advertisement

Log in

The influence of inorganic fillers on the light transmission through resin-matrix composites during the light-curing procedure: an integrative review

  • Review
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study was to perform an integrative review on the effect the inorganic fillers on the light transmission through the resin-matrix composites during the light-curing procedure.

Method

A bibliographic review was performed on PubMed using the following search terms: “fillers” OR “particle” AND “light curing” OR “polymerization” AND “light transmission” OR “light absorption” OR “light irradiance” OR “light attenuation” OR “light diffusion” AND “resin composite.” The search involved articles published in English language in the last 10 years.

Results

Selected studies reported a decrease in biaxial strength and hardness in traditional resin-matrix composites in function of the depth of polymerization. However, there were no significant differences in biaxial strength and hardness recorded along the polymerization depth of Bulk-Fill™ composites. Strength and hardness were enhanced by increasing the size and content of inorganic fillers although some studies revealed a progressive decrease in the degree of conversion on increasing silica particle size. The translucency of glass–ceramic spherical fillers promoted light diffusion mainly in critical situations such as in the case of deep proximal regions of resin-matrix composites.

Conclusions

The amount of light transmitted through the resin-matrix composites is influenced by the size, content, microstructure, and shape of the inorganic filler particles. The decrease of the degree of conversion affects negatively the physical and mechanical properties of the resin-matrix composites.

Clinical relevance

The type and content of inorganic fillers in the chemical composition of resin-matrix composites do affect their polymerization. As a consequence, the clinical performance of resin-matrix composites can be compromised leading to variable physical properties and degradation. The polymerization mode of resin-matrix composites can be improved according to the type of inorganic fillers in their chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ferracane JL (2011) Resin composite - State of the art. Dent Mater 27:29–38

    Article  Google Scholar 

  2. Yang J, Shen J, Wu X et al (2020) Effects of nano-zirconia fillers conditioned with phosphate ester monomers on the conversion and mechanical properties of Bis-GMA- and UDMA-based resin composites. J Dent 94:103306. https://doi.org/10.1016/j.jdent.2020.103306

    Article  PubMed  Google Scholar 

  3. Almasabi W, Tichy A, Abdou A et al (2021) Effect of water storage and thermocycling on light transmission properties, translucency and refractive index of nanofilled flowable composites. Dent Mater J 40:599–605. https://doi.org/10.4012/dmj.2020-154

    Article  PubMed  Google Scholar 

  4. Graf N, Ilie N (2022) Long-term mechanical stability and light transmission characteristics of one shade resin-based composites. J Dent 116:103915. https://doi.org/10.1016/j.jdent.2021.103915

    Article  PubMed  Google Scholar 

  5. Sirovica S, Solheim JH, Skoda MWA et al (2020) Origin of micro-scale heterogeneity in polymerisation of photo-activated resin composites. Nat Commun 11:1849. https://doi.org/10.1038/s41467-020-15669-z

    Article  PubMed  PubMed Central  Google Scholar 

  6. Horie K, Nakajima M, Hosaka K et al (2012) Influences of composite-composite join on light transmission characteristics of layered resin composites. Dent Mater 28:204–211. https://doi.org/10.1016/j.dental.2011.10.006

    Article  PubMed  Google Scholar 

  7. AndreasiBassi M, AndreasiBassi S, Andrisani C et al (2016) Light diffusion through composite restorations added with spherical glass mega fillers. Oral Implantol (Rome) 9:80–89. https://doi.org/10.11138/orl/2016.9.1S.080

    Article  Google Scholar 

  8. Habib E, Wang R, Zhu XX (2017) Monodisperse silica-filled composite restoratives mechanical and light transmission properties. Dent Mater 33:280–287. https://doi.org/10.1016/j.dental.2016.12.008

    Article  PubMed  Google Scholar 

  9. Leyva Del Rio D, Johnston WM (2022) Optical characteristics of experimental dental composite resin materials. J Dent 118:103949. https://doi.org/10.1016/j.jdent.2022.103949

    Article  PubMed  Google Scholar 

  10. Goldberg M (2008) In vitro and in vivo studies on the toxicity of dental resin components: a review. Clin Oral Investig 12:1–8. https://doi.org/10.1007/s00784-007-0162-8

    Article  PubMed  Google Scholar 

  11. Koulaouzidou EA, Roussou K, Sidiropoulos K et al (2018) Investigation of the chemical profile and cytotoxicity evaluation of organic components eluted from pit and fissure sealants. Food Chem Toxicol 120:536–543. https://doi.org/10.1016/j.fct.2018.07.042

    Article  PubMed  Google Scholar 

  12. Lopes-Rocha L, Ribeiro-Gonçalves L, Henriques B et al (2021) An integrative review on the toxicity of Bisphenol A (BPA) released from resin composites used in dentistry. J Biomed Mater Res B Appl Biomater. https://doi.org/10.1002/jbm.b.34843

    Article  PubMed  Google Scholar 

  13. Kim K, Son KM, Kwon JH et al (2013) The effects of restorative composite resins on the cytotoxicity of dentine bonding agents. Dent Mater J 32:709–717. https://doi.org/10.4012/dmj.2012-335

    Article  PubMed  Google Scholar 

  14. Al-Hiyasat AS, Darmani H, Milhem MM (2005) Cytotoxicity evaluation of dental resin composites and their flowable derivatives. Clin Oral Investig 9:21–25. https://doi.org/10.1007/s00784-004-0293-0

    Article  PubMed  Google Scholar 

  15. Fronza BM, Ayres A, Pacheco RR et al (2017) Characterization of Inorganic Filler Content, Mechanical Properties, and Light Transmission of Bulk-fill Resin Composites. Oper Dent 42:445–455. https://doi.org/10.2341/16-024-L

    Article  PubMed  Google Scholar 

  16. Al-Zain AO, Eckert GJ, Lukic H et al (2019) Polymerization pattern characterization within a resin-based composite cured using different curing units at two distances. Clin Oral Investig 23:3995–4010. https://doi.org/10.1007/s00784-019-02831-1

    Article  PubMed  Google Scholar 

  17. Stansbury JW (2012) Dimethacrylate network formation and polymer property evolution as determined by the selection of monomers and curing conditions. Dent Mater 28:13–22. https://doi.org/10.1016/j.dental.2011.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lise DP, Van Ende A, De Munck J et al (2018) Light irradiance through novel CAD-CAM block materials and degree of conversion of composite cements. Dent Mater 34:296–305. https://doi.org/10.1016/j.dental.2017.11.008

    Article  PubMed  Google Scholar 

  19. Par M, Tarle Z, Hickel R, Ilie N (2018) Polymerization kinetics of experimental bioactive composites containing bioactive glass. J Dent 76:83–88. https://doi.org/10.1016/j.jdent.2018.06.012

    Article  PubMed  Google Scholar 

  20. Karabela MM, Sideridou ID (2011) Synthesis and study of physical properties of dental light-cured nanocomposites using different amounts of a urethane dimethacrylate trialkoxysilane coupling agent. Dent Mater 27:1144–1152. https://doi.org/10.1016/j.dental.2011.08.008

    Article  PubMed  Google Scholar 

  21. Rueggeberg FA, Hashinger DT, Fairhurst CW (1990) Calibration of FTIR conversion analysis of contemporary dental resin composites. Dent Mater 6:241–249. https://doi.org/10.1016/S0109-5641(05)80005-3

    Article  PubMed  Google Scholar 

  22. Karabela MM, Sideridou ID (2011) Synthesis and study of properties of dental resin composites with different nanosilica particles size. Dent Mater 27:825–835. https://doi.org/10.1016/j.dental.2011.04.008

    Article  PubMed  Google Scholar 

  23. Sideridou ID, Karabela MM, Vouvoudi EC (2011) Physical properties of current dental nanohybrid and nanofill light-cured resin composites. Dent Mater 27:598–607. https://doi.org/10.1016/j.dental.2011.02.015

    Article  PubMed  Google Scholar 

  24. Sideridou ID, Karabela MM, Micheliou CN et al (2009) Physical properties of a hybrid and a nanohybrid dental light-cured resin composite. J Biomater Sci Polym Ed 20:1831–1844. https://doi.org/10.1163/156856208X386435

    Article  PubMed  Google Scholar 

  25. Kwaśny M, Bombalska A, Obroniecka K (2022) A reliable method of measuring the conversion degrees of methacrylate dental resins. Sensors (Basel) 22:. https://doi.org/10.3390/s22062170

  26. Baek D-M, Park J-K, Son S-A et al (2013) Mechanical properties of composite resins light-cured using a blue DPSS laser. Lasers Med Sci 28:597–604. https://doi.org/10.1007/s10103-012-1117-0

    Article  PubMed  Google Scholar 

  27. Par M, Marovic D, Attin T et al (2020) Effect of rapid high-intensity light-curing on polymerization shrinkage properties of conventional and bulk-fill composites. J Dent 101:103448. https://doi.org/10.1016/j.jdent.2020.103448

    Article  PubMed  Google Scholar 

  28. Daugherty MM, Lien W, Mansell MR et al (2018) Effect of high-intensity curing lights on the polymerization of bulk-fill composites. Dent Mater 34:1531–1541. https://doi.org/10.1016/j.dental.2018.06.005

    Article  PubMed  Google Scholar 

  29. Aravamudhan K, Floyd CJE, Rakowski D et al (2006) Light-emitting diode curing light irradiance and polymerization of resin-based composite. J Am Dent Assoc 137:213–223. https://doi.org/10.14219/jada.archive.2006.0147

    Article  PubMed  Google Scholar 

  30. Franco EB, dos Santos PA, Mondelli RFL (2007) The effect of different light-curing units on tensile strength and microhardness of a composite resin. J Appl Oral Sci 15:470–474. https://doi.org/10.1590/s1678-77572007000600003

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sabbagh J, Ryelandt L, Bachérius L et al (2004) Characterization of the inorganic fraction of resin composites. J Oral Rehabil 31:1090–1101. https://doi.org/10.1111/j.1365-2842.2004.01352.x

    Article  PubMed  Google Scholar 

  32. Beun S, Glorieux T, Devaux J et al (2007) Characterization of nanofilled compared to universal and microfilled composites. Dent Mater 23:51–59. https://doi.org/10.1016/j.dental.2005.12.003

    Article  PubMed  Google Scholar 

  33. Fujita K, Ikemi T, Nishiyama N (2011) Effects of particle size of silica filler on polymerization conversion in a light-curing resin composite. Dent Mater 27:1079–1085. https://doi.org/10.1016/j.dental.2011.07.010

    Article  PubMed  Google Scholar 

  34. Hong G, Yang J, Jin X et al (2020) Mechanical properties of nanohybrid resin composites containing various mass fractions of modified zirconia particles. Int J Nanomedicine 15:9891–9907. https://doi.org/10.2147/IJN.S283742

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen W-C, Wu H-Y, Chen H-S (2013) Evaluation of reinforced strength and remineralized potential of resins with nanocrystallites and silica modified filler surfaces. Mater Sci Eng C Mater Biol Appl 33:1143–1151. https://doi.org/10.1016/j.msec.2012.12.022

    Article  PubMed  Google Scholar 

  36. Souza JCM, Bentes AC, Reis K et al (2016) Abrasive and sliding wear of resin composites for dental restorations. Tribol Int 102:154–160. https://doi.org/10.1016/j.triboint.2016.05.035

    Article  Google Scholar 

  37. Rodrigues DS, Buciumeanu M, Martinelli AE et al (2015) Mechanical strength and wear of dental glass-ionomer and resin composites affected by porosity and chemical composition. J Bio- Tribo-Corrosion 1:24. https://doi.org/10.1007/s40735-015-0025-9

    Article  Google Scholar 

  38. Drummond JL (2008) Degradation, fatigue, and failure of resin dental composite materials. J Dent Res 87:710–719. https://doi.org/10.1177/154405910808700802

    Article  PubMed  Google Scholar 

  39. Xu T, Li X, Wang H et al (2020) Polymerization shrinkage kinetics and degree of conversion of resin composites. J Oral Sci 62:275–280. https://doi.org/10.2334/josnusd.19-0157

    Article  PubMed  Google Scholar 

  40. Gonçalves F, Azevedo CLN, Ferracane JL, Braga RR (2011) BisGMA/TEGDMA ratio and filler content effects on shrinkage stress. Dent Mater 27:520–526. https://doi.org/10.1016/j.dental.2011.01.007

    Article  PubMed  Google Scholar 

  41. Sudheer V, Manjunath M (2011) Contemporary curing profiles: Study of effectiveness of cure and polymerization shrinkage of composite resins: an in vitro study. J Conserv Dent 14:383–386. https://doi.org/10.4103/0972-0707.87205

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tafur-Zelada CM, Carvalho O, Silva FS et al (2021) The influence of zirconia veneer thickness on the degree of conversion of resin-matrix cements: an integrative review. Clin Oral Investig. https://doi.org/10.1007/s00784-021-03904-w

    Article  PubMed  Google Scholar 

  43. Souza JCM, Fernandes V, Correia A et al (2022) Surface modification of glass fiber-reinforced composite posts to enhance their bond strength to resin-matrix cements: an integrative review. Clin Oral Investig 26:95–107. https://doi.org/10.1007/s00784-021-04221-y

    Article  PubMed  Google Scholar 

  44. Messous R, Henriques B, Bousbaa H et al (2021) Cytotoxic effects of submicron- and nano-scale titanium debris released from dental implants: an integrative review. Clin Oral Investig. https://doi.org/10.1007/s00784-021-03785-z

    Article  PubMed  Google Scholar 

  45. Souza JCM, Pinho SS, Braz MP et al (2021) Carbon fiber-reinforced PEEK in implant dentistry: a scoping review on the finite element method. Comput Methods Biomech Biomed Engin 24:1355–1367. https://doi.org/10.1080/10255842.2021.1888939

    Article  PubMed  Google Scholar 

  46. Cunha W, Carvalho O, Henriques B et al (2022) Surface modification of zirconia dental implants by laser texturing. Lasers Med Sci 37:77–93. https://doi.org/10.1007/s10103-021-03475-y

    Article  PubMed  Google Scholar 

  47. Ilie N (2017) Impact of light transmittance mode on polymerisation kinetics in bulk-fill resin-based composites. J Dent 63:51–59. https://doi.org/10.1016/j.jdent.2017.05.017

    Article  PubMed  Google Scholar 

  48. Omran TA, Garoushi S, Abdulmajeed AA et al (2017) Influence of increment thickness on dentin bond strength and light transmission of composite base materials. Clin Oral Investig 21:1717–1724. https://doi.org/10.1007/s00784-016-1953-6

    Article  PubMed  Google Scholar 

  49. Son S-A, Park J-K, Seo D-G et al (2017) How light attenuation and filler content affect the microhardness and polymerization shrinkage and translucency of bulk-fill composites? Clin Oral Investig 21:559–565. https://doi.org/10.1007/s00784-016-1920-2

    Article  PubMed  Google Scholar 

  50. Germscheid W, de Gorre LG, Sullivan B et al (2018) Post-curing in dental resin-based composites. Dent Mater 34(9):1367–1377. https://doi.org/10.1016/j.dental.2018.06.021

  51. Perez MM, Hita-Iglesias C, Ghinea R et al (2016) Optical properties of supra-nano spherical filled resin composites compared to nanofilled, nano-hybrid and micro-hybrid composites. Dent Mater J 35:353–359. https://doi.org/10.4012/dmj.2015-126

    Article  PubMed  Google Scholar 

  52. Par M, Prskalo K, Tauböck TT et al (2021) Polymerization kinetics of experimental resin composites functionalized with conventional (45S5) and a customized low-sodium fluoride-containing bioactive glass. Sci Rep 11:21225. https://doi.org/10.1038/s41598-021-00774-w

    Article  PubMed  PubMed Central  Google Scholar 

  53. Par M, Spanovic N, Mohn D et al (2020) Curing potential of experimental resin composites filled with bioactive glass: a comparison between Bis-EMA and UDMA based resin systems. Dent Mater 36:711–723. https://doi.org/10.1016/j.dental.2020.03.015

    Article  PubMed  Google Scholar 

  54. Garoushi S, Vallittu P, Lassila L (2019) Mechanical properties and radiopacity of flowable fiber-reinforced composite. Dent Mater J 38:196–202. https://doi.org/10.4012/dmj.2018-102

    Article  PubMed  Google Scholar 

  55. Verzola KC, Dressano D, Saraceni CHC et al (2020) Bis(4-methyl phenyl)iodonium as an alternative component to diphenyliodonium in camphorquinone-based ternary initiating systems. Dent Mater 36:1282–1288. https://doi.org/10.1016/j.dental.2020.06.002

    Article  PubMed  Google Scholar 

  56. Canché-Escamilla G, Duarte-Aranda S, Toledano M (2014) Synthesis and characterization of hybrid silica/PMMA nanoparticles and their use as filler in dental composites. Mater Sci Eng C Mater Biol Appl 42:161–167. https://doi.org/10.1016/j.msec.2014.05.016

    Article  PubMed  Google Scholar 

  57. Faria-E-Silva AL, Pfeifer CS (2017) Impact of thio-urethane additive and filler type on light-transmission and depth of polymerization of dental composites. Dent Mater 33:1274–1285. https://doi.org/10.1016/j.dental.2017.07.020

    Article  PubMed  PubMed Central  Google Scholar 

  58. Scougall-Vilchis RJ, Hotta Y, Hotta M et al (2009) Examination of composite resins with electron microscopy, microhardness tester and energy dispersive X-ray microanalyzer. Dent Mater J 28:102–112. https://doi.org/10.4012/dmj.28.102

    Article  PubMed  Google Scholar 

  59. Ferracane JL, Stansbury JW, Burke FJT (2011) Self-adhesive resin cements - chemistry, properties and clinical considerations. J Oral Rehabil 38:295–314. https://doi.org/10.1111/j.1365-2842.2010.02148.x

    Article  PubMed  Google Scholar 

  60. Caprak YO, Turkoglu P, Akgungor G (2019) Does the Translucency of novel monolithic CAD/CAM materials affect resin cement polymerization with different curing modes? J Prosthodont Off J Am Coll Prosthodont 28:e572–e579. https://doi.org/10.1111/jopr.12956

    Article  Google Scholar 

  61. Ferracane JL, Hilton TJ, Stansbury JW et al (2017) Academy of dental materials guidance—resin composites: Part II—technique sensitivity (handling, polymerization, dimensional changes). Dent Mater 33:1171–1191. https://doi.org/10.1016/j.dental.2017.08.188

    Article  PubMed  Google Scholar 

  62. Pontes LF, Alves EB, Alves BP et al (2013) Mechanical properties of nanofilled and microhybrid composites cured by different light polymerization modes. Gen Dent 61:30–33

    PubMed  Google Scholar 

  63. Elbishari H, Silikas N, Satterthwaite J (2012) Filler size of resin-composites, percentage of voids and fracture toughness: is there a correlation? Dent Mater J 31:523–527. https://doi.org/10.4012/dmj.2011-256

    Article  PubMed  Google Scholar 

  64. Gupta SK, Saxena P, Pant VA, Pant AB (2012) Release and toxicity of dental resin composite. Toxicol Int 19:225–234. https://doi.org/10.4103/0971-6580.103652

    Article  PubMed  PubMed Central  Google Scholar 

  65. Malhotra N, Mala K (2010) Light-curing considerations for resin-based composite materials: a review. Part I. Compend Contin Educ Dent 31:498–505 (quiz 506, 508)

    PubMed  Google Scholar 

  66. Son S-A, Roh H-M, Hur B et al (2014) The effect of resin thickness on polymerization characteristics of silorane-based composite resin. Restor Dent Endod 39:310–318. https://doi.org/10.5395/rde.2014.39.4.310

    Article  PubMed  PubMed Central  Google Scholar 

  67. Moldovan M, Balazsi R, Soanca A, et al (2019) Evaluation of the degree of conversion, residual monomers and mechanical properties of some light-cured dental resin composites. Mater (Basel, Switzerland) 12:. https://doi.org/10.3390/ma12132109

  68. Fidalgo-Pereira R (2022) Relationship between the inorganic content and the polymerization of the organic matrix of resin composites for dentistry: a narrative review. RevSALUS - Revista Científica Internacional Da Rede Académica Das Ciências Da Saúde Da Lusofonia 4(1). https://doi.org/10.51126/revsalus.v4i1.136

  69. Knezević A, Tarle Z, Meniga A et al (2005) Influence of light intensity from different curing units upon composite temperature rise. J Oral Rehabil 32:362–367. https://doi.org/10.1111/j.1365-2842.2004.01418.x

    Article  PubMed  Google Scholar 

  70. Wahbi MA, Aalam FA, Fatiny FI et al (2012) Characterization of heat emission of light-curing units. Saudi Dent J 24:91–98. https://doi.org/10.1016/j.sdentj.2012.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  71. Satterthwaite JD, Maisuria A, Vogel K, Watts DC (2012) Effect of resin-composite filler particle size and shape on shrinkage-stress. Dent Mater 28:609–614. https://doi.org/10.1016/j.dental.2012.01.007

    Article  PubMed  Google Scholar 

  72. Spinell T, Schedle A, Watts DC (2009) Polymerization shrinkage kinetics of dimethacrylate resin-cements. Dent Mater 25:1058–1066. https://doi.org/10.1016/j.dental.2009.04.008

    Article  PubMed  Google Scholar 

  73. Delgado AHS, Owji N, Ashley P, Young AM (2021) Varying 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) level improves polymerisation kinetics and flexural strength in self-adhesive, remineralising composites. Dent Mater 37:1366–1376. https://doi.org/10.1016/j.dental.2021.06.006

    Article  PubMed  Google Scholar 

  74. Habib E, Wang R, Wang Y et al (2016) Inorganic fillers for dental resin composites: present and future. ACS Biomater Sci Eng 2:1–11

    Article  Google Scholar 

  75. Palin WM, Leprince JG, Hadis MA (2018) Shining a light on high volume photocurable materials. Dent Mater 34:695–710. https://doi.org/10.1016/j.dental.2018.02.009

    Article  PubMed  Google Scholar 

  76. Wegehaupt FJ, Lunghi N, Belibasakis GN, Attin T (2016) Influence of light-curing distance on degree of conversion and cytotoxicity of etch-and-rinse and self-etch adhesives. BMC Oral Health 17:12. https://doi.org/10.1186/s12903-016-0239-3

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by FCT-Portugal [UID/EEA/04436/2013, SFRH/BPD/123769/ 2016, and Project LaserMULTICER [POCI-01–0145-FEDER-031035].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlio C. M. Souza.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fidalgo-Pereira, R., Carpio, D., Torres, O. et al. The influence of inorganic fillers on the light transmission through resin-matrix composites during the light-curing procedure: an integrative review. Clin Oral Invest 26, 5575–5594 (2022). https://doi.org/10.1007/s00784-022-04589-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-022-04589-5

Keywords

Navigation