Skip to main content

Advertisement

Log in

Dentin remineralization in acidic solution without initial calcium phosphate ions via poly(amido amine) and calcium phosphate nanocomposites after fluid challenges

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

A previous study showed that the combination of poly(amido amine) (PAMAM) and rechargeable composites with nanoparticles of amorphous calcium phosphate (NACP) induced dentin remineralization in an acidic solution with no initial calcium (Ca) and phosphate (P) ions, mimicking the oral condition of individuals with dry mouths. However, the frequent fluid challenge in the oral cavity may decrease the remineralization capacity. Therefore, the objective of the present study was to investigate the remineralization efficacy on dentin in an acid solution via PAMAM + NACP after fluid challenges for the first time.

Methods

The NACP nanocomposite was stored in a pH 4 solution for 77 days to exhaust its Ca and P ions and then recharged. Demineralized dentin samples were divided into four groups: (1) control dentin, (2) dentin coated with PAMAM, (3) dentin with recharged NACP composite, and (4) dentin with PAMAM + recharged NACP. PAMAM-coated dentin was shaken in phosphate-buffered saline for 77 days to desorb PAMAM from dentin. Samples were treated in pH 4 lactic acid with no initial Ca and P ions for 42 days.

Results

After 77 days of fluid challenge, PAMAM failed to prevent dentin demineralization in lactic acid. The recharged NACP nanocomposite raised the pH to above 6.5 and re-released more than 6.0 and 4.0 mmol/L Ca and P ions daily, respectively, which inhibited further demineralization. In contrast, the PAMAM + NACP combined method induced great dentin remineralization and restored the dentin microhardness to 0.54 ± 0.04 GPa, which approached that of sound dentin (P = 0.426, P > 0.05).

Conclusions

The PAMAM + NACP combination achieved dentin remineralization in an acid solution with no initial Ca and P ions, even after severe fluid challenges.

Clinical relevance

The novel PAMAM + NACP has a strong and sustained remineralization capability to inhibit secondary caries, even for individuals with dry mouths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beazoglou T, Eklund S, Heffley D, Meiers J, Brown LJ, Bailit H (2007) Economic impact of regulating the use of amalgam restorations. Public Health Rep 122:657–663. https://doi.org/10.1177/003335490712200513

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ferracane JL (2011) Resin composite—state of the art. Dent Mater 27:29–38. https://doi.org/10.1016/j.dental.2010.10.020

    Article  PubMed  Google Scholar 

  3. Ferracane JL (2013) Resin-based composite performance: are there some things we can’t predict? Dent Mater 29:51–58. https://doi.org/10.1016/j.dental.2012.06.013

    Article  PubMed  Google Scholar 

  4. de Almeida PDV, Gregio A, Machado M, De Lima A, Azevedo LR (2008) Saliva composition and functions: a comprehensive review. J Contemp Dent Pract 9:72–80. https://doi.org/10.5005/jcdp-9-3-72

    Article  Google Scholar 

  5. Humphrey SP, Williamson RT (2001) A review of saliva: normal composition, flow, and function. J Prosthet Dent 85:162–169. https://doi.org/10.1067/mpr.2001.113778

    Article  PubMed  Google Scholar 

  6. Lenander-Lumikari M, Loimaranta V (2000) Saliva and dental caries. Adv Dent Res 14:40–47. https://doi.org/10.1177/08959374000140010601

    Article  PubMed  Google Scholar 

  7. Bardow A, Nyvad B, Nauntofte B (2001) Relationships between medication intake, complaints of dry mouth, salivary flow rate and composition, and the rate of tooth demineralization in situ. Arch Oral Biol 46:413–423. https://doi.org/10.1016/s0003-9969(01)00003-6

    Article  PubMed  Google Scholar 

  8. Selwitz RH, Ismail AI, Pitts NB (2007) Dental caries. Lancet 369:51–59. https://doi.org/10.1016/S0140-6736(07)60031-2

    Article  PubMed  Google Scholar 

  9. Reich E, Lussi A, Newbrun E (1999) Caries-risk assessment. Int Dent J 49:15–26. https://doi.org/10.1111/j.1875-595x.1999.tb00503.x

    Article  PubMed  Google Scholar 

  10. Guggenheime J, Moore PA (2003) Xerostomia: etiology, recognition and treatment. J. Am. Dent. Assoc 134:61–69. https://doi.org/10.14219/jada.archive.2003.0018

    Article  Google Scholar 

  11. Curzon M, Preston A (2003) Risk groups: nursing bottle caries/caries in the elderly. Caries Res 38:24–33. https://doi.org/10.1159/000074359

    Article  Google Scholar 

  12. Burlage FR, Coppes RP, Meertens H, Stokman MA, Vissink A (2001) Parotid and submandibular/sublingual salivary flow during high dose radiotherapy. Radiother Oncol 61:271–274. https://doi.org/10.1016/s0167-8140(01)00427-3

    Article  PubMed  Google Scholar 

  13. Dirix P, Nuyts S, Van den Bogaert W (2006) Radiation-induced xerostomia in patients with head and neck cancer: a literature review. Cancer 107:2525–2534. https://doi.org/10.1002/cncr.22302

    Article  PubMed  Google Scholar 

  14. Silva AR, Alves FA, Berger SB, Giannini M, Goes MF, Lopes MA (2010) Radiation-related caries and early restoration failure in head and neck cancer patients. A polarized light microscopy and scanning electron microscopy study. Support Care Cancer 18:83–87. https://doi.org/10.1007/s00520-009-0633-3

    Article  PubMed  Google Scholar 

  15. Liang X, Zhang J, Peng G, Li J, Bai S (2016) Radiation caries in nasopharyngeal carcinoma patients after intensity-modulated radiation therapy: a cross-sectional study. J Dent Sci 11:1–7. https://doi.org/10.1016/j.jds.2015.09.003

    Article  PubMed  Google Scholar 

  16. Hahnel S, Behr M, Handel G, Burgers R (2009) Saliva substitutes for the treatment of radiation-induced xerostomia–a review. Support Care Cancer 17:1331–1343. https://doi.org/10.1007/s00520-009-0671-x

    Article  PubMed  Google Scholar 

  17. Sim CP, Wee J, Xu Y, Cheung YB, Soong YL, Manton DJ (2015) Anti-caries effect of CPP-ACP in irradiated nasopharyngeal carcinoma patients. Clin Oral Invest 19:1005–1011. https://doi.org/10.1007/s00784-014-1318-y

    Article  Google Scholar 

  18. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132. https://doi.org/10.1295/polymj.17.117

    Article  Google Scholar 

  19. Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 57:2106–2129. https://doi.org/10.1016/j.addr.2005.09.018

    Article  PubMed  Google Scholar 

  20. Liang K, Gao Y, Li J, Liao Y, Xiao S, Lv H, He L, Cheng L, Zhou X, Li J (2014) Effective dentinal tubule occlusion induced by polyhydroxy-terminated PAMAM dendrimer in vitro. RSC Adv 4:43496–43503. https://doi.org/10.1039/c4ra07100j

    Article  Google Scholar 

  21. Zhang H, Yang J, Liang K, Li J, He L, Yang X, Peng S, Chen X, Ding C, Li J (2015) Effective dentin restorative material based on phosphate-terminated dendrimer as artificial protein. Colloid Surface B 128:304–314. https://doi.org/10.1016/j.colsurfb.2015.01.058

    Article  Google Scholar 

  22. Liang K, Yuan H, Li J, Yang J, Zhou X, He L, Cheng L, Gao Y, Xu X, Zhou X, Li J (2015) Remineralization of demineralized dentin induced by amine-terminated PAMAM dendrimer. Macromol Mater Eng 300:107–117. https://doi.org/10.1002/mame.201400207

    Article  Google Scholar 

  23. Li J, Yang J, Li J, Chen L, Liang K, Wu W, Chen X, Li J (2013) Bioinspired intrafibrillar mineralization of human dentine by PAMAM dendrimer. Biomaterials 34:6738–6747. https://doi.org/10.1016/j.biomaterials.2013.05.046

    Article  PubMed  Google Scholar 

  24. Xu HH, Moreau JL, Sun L, Chow LC (2011) Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater 27:762–769. https://doi.org/10.1016/j.dental.2011.03.016

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moreau JL, Sun L, Chow LC, Xu HH (2011) Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite. J Biomed Mater Res B 98:80–88. https://doi.org/10.1002/jbm.b.31834

    Article  Google Scholar 

  26. Weir MD, Chow LC, Xu HH (2012) Remineralization of demineralized enamel via calcium phosphate nanocomposite. J Dent Res 91:979–984. https://doi.org/10.1177/0022034512458288

    Article  PubMed  PubMed Central  Google Scholar 

  27. Weir MD, Ruan J, Zhang N, Chow LC, Zhang K, Chang X, Bai Y, Xu HHK (2017) Effect of calcium phosphate nanocomposite on in vitro remineralization of human dentin lesions. Dent Mater 33:1033–1044. https://doi.org/10.1016/j.dental.2017.06.015

    Article  PubMed  Google Scholar 

  28. Melo MA, Weir MD, Rodrigues LK, Xu HH (2013) Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model. Dent Mater 29(2):231–240. https://doi.org/10.1016/j.dental.2012.10.010

    Article  PubMed  Google Scholar 

  29. Liang K, Zhou H, Weir MD, Bao C, Reynolds MA, Zhou X, Li J, Xu HHK (2017) Poly(amido amine) and calcium phosphate nanocomposite remineralization of dentin in acidic solution without calcium phosphate ions. Dent Mater 33:818–829. https://doi.org/10.1016/j.dental.2017.04.016

    Article  PubMed  Google Scholar 

  30. Zhang L, Weir MD, Chow LC, Antonucci JM, Chen J, Xu HH (2016) Novel rechargeable calcium phosphate dental nanocomposite. Dent Mater 32:285–293. https://doi.org/10.1016/j.dental.2015.11.015

    Article  PubMed  Google Scholar 

  31. Xie XJ, Xing D, Wang L, Zhou H, Weir MD, Bai YX, Xu HH (2017) Novel rechargeable calcium phosphate nanoparticle-containing orthodontic cement. Int J Oral Sci 9:24–32. https://doi.org/10.1038/ijos.2016.40

    Article  PubMed  Google Scholar 

  32. Zhang K, Cheng L, Weir MD, Bai Y-X, Xu HH (2016) Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite. Int J Oral Sci 8:45–53. https://doi.org/10.1038/ijos.2015.33

    Article  PubMed  Google Scholar 

  33. Chen C, Weir MD, Cheng L, Lin NJ, Lin-Gibson S, Chow LC, Zhou X, Xu HH (2014) Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles. Dent Mater 30:891–901. https://doi.org/10.1016/j.dental.2014.05.025

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tay FR, Pashley DH (2008) Guided tissue remineralisation of partially demineralised human dentine. Biomaterials 29:1127–1137. https://doi.org/10.1016/j.biomaterials.2007.11.001

    Article  PubMed  Google Scholar 

  35. Zhang L, Weir MD, Hack G, Fouad AF, Xu HH (2015) Rechargeable dental adhesive with calcium phosphate nanoparticles for long-term ion release. J Dent 43:1587–1595. https://doi.org/10.1016/j.jdent.2015.06.009

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liang K, Weir MD, Xie X, Wang L, Reynolds MA, Li J, Xu HH (2016) Dentin remineralization in acid challenge environment via PAMAM and calcium phosphate composite. Dent Mater 32:1429–1440. https://doi.org/10.1016/j.dental.2016.09.013

    Article  PubMed  Google Scholar 

  37. Jia R, Lu Y, Yang CW, Luo X, Han Y (2014) Effect of generation 4.0 polyamidoamine dendrimer on the mineralization of demineralized dentinal tubules in vitro. Arch Oral Biol 59:1085–1093. https://doi.org/10.1016/j.archoralbio.2014.06.008

    Article  PubMed  Google Scholar 

  38. Featherstone JD (2000) The science and practice of caries prevention. J. Am. Dent. Asso 131:887–899. https://doi.org/10.14219/jada.archive.2000.0307

    Article  Google Scholar 

  39. Featherstone JD (2009) Remineralization, the natural caries repair process–the need for new approaches. Adv Dent Res 21:4–7. https://doi.org/10.1177/0895937409335590

    Article  PubMed  Google Scholar 

  40. Kim YK, Yiu CK, Kim JR, Gu L, Kim SK, Weller RN, Pashley DH, Tay FR (2010) Failure of a glass ionomer to remineralize apatite-depleted dentin. J Dent Res 89:230–235. https://doi.org/10.1177/0022034509357172

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liang K, Xiao S, Shi W, Li J, Yang X, Gao Y, Gou Y, Hao L, He L, Cheng L, Xu X, Zhou X, Li J (2015) 8DSS-promoted remineralization of demineralized dentin in vitro. J Mater Chem B 3:6763–6772. https://doi.org/10.1039/c5tb00764j

    Article  PubMed  Google Scholar 

  42. Zhou YZ, Cao Y, Liu W, Chu CH, Li QL (2012) Polydopamine-induced tooth remineralization, ACS Appl. Mater Inter 4:6901–6910. https://doi.org/10.1021/am302041b

    Article  Google Scholar 

  43. Tay FR, Pashley DH (2009) Biomimetic remineralization of resin-bonded acid-etched dentin. J Dent Res 88:719–724. https://doi.org/10.1177/0022034509341826

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim YK, Mai S, Mazzoni A, Liu Y, Tezvergil-Mutluay A, Takahashi K, Zhang K, Pashley DH, Tay FR (2010) Biomimetic remineralization as a progressive dehydration mechanism of collagen matrices–implications in the aging of resin-dentin bonds. Acta Biomater 6:3729–3739. https://doi.org/10.1016/j.actbio.2010.03.021

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang Q, Wang XM, Tian LL, Cheng ZJ, Cui FZ (2011) In situ remineralizaiton of partially demineralized human dentine mediated by a biomimetic non-collagen peptide. Soft Matter 7:9673. https://doi.org/10.1039/c1sm05018d

    Article  Google Scholar 

  46. Cao Y, Liu W, Ning T, Mei ML, Li QL, Lo EC, Chu CH (2014) A novel oligopeptide simulating dentine matrix protein 1 for biomimetic mineralization of dentine. Clin Oral Invest 18:873–881. https://doi.org/10.1007/s00784-013-1035-y

    Article  Google Scholar 

  47. Zhang W, Liao S, Cui F (2003) Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem Mater 15:3221–3226. https://doi.org/10.1021/cm030080g

    Article  Google Scholar 

  48. Wang Z, Jiang T, Sauro S, Wang Y, Thompson I, Watson TF, Sa Y, Xing W, Shen Y, Haapasalo M (2011) Dentine remineralization induced by two bioactive glasses developed for air abrasion purposes. J Dent 39:746–756. https://doi.org/10.1016/j.jdent.2011.08.006

    Article  PubMed  Google Scholar 

  49. Deng M, Wen HL, Dong XL, Li F, Xu X, Li H, Li JY, Zhou XD (2013) Effects of 45S5 bioglass on surface properties of dental enamel subjected to 35% hydrogen peroxide. Int J Oral Sci 5:103–110. https://doi.org/10.1038/ijos.2013.31

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hara AT, Karlinsey RL, Zero DT (2008) Dentine remineralization by simulated saliva formulations with different Ca and Pi contents. Caries Res 42:51–56. https://doi.org/10.1159/000111750

    Article  PubMed  Google Scholar 

  51. Hsu CC, Chung HY, Yang JM, Shi W, Wu B (2011) Influences of ionic concentration on nanomechanical behaviors for remineralized enamel. J Mech Behav Biomed 4:1982–1989. https://doi.org/10.1016/j.jmbbm.2011.06.017

    Article  Google Scholar 

  52. Zhang M, He LB, Exterkate RA, Cheng L, Li JY, Ten Cate JM, Crielaard W, Deng DM (2015) Biofilm layers affect the treatment outcomes of NaF and Nano-hydroxyapatite. J Dent Res 94:602–607. https://doi.org/10.1177/0022034514565644

    Article  PubMed  Google Scholar 

  53. Niu LN, Zhang W, Pashley DH, Breschi L, Mao J, Chen JH, Tay FR (2014) Biomimetic remineralization of dentin. Dent Mater 30:77–96. https://doi.org/10.1016/j.dental.2013.07.013

    Article  PubMed  Google Scholar 

  54. Ten Cate J, Duijsters P (1982) Alternating demineralization and remineralization of artificial enamel lesions. Caries Res 16:201–210. https://doi.org/10.1159/000260599

    Article  PubMed  Google Scholar 

  55. Hsu CC, Chung HY, Yang JM, Shi W, Wu B (2011) Influence of 8DSS peptide on nano-mechanical behavior of human enamel. J Dent Res 90:88–92. https://doi.org/10.1177/0022034510381904

    Article  PubMed  Google Scholar 

  56. Langhorst S, O’Donnell J, Skrtic D (2009) In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: quantitative microradiographic study. Dent Mater 25:884–891. https://doi.org/10.1016/j.dental.2009.01.094

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yang Y, Lv XP, Shi W, Li JY, Li DX, Zhou XD, Zhang LL (2014) 8DSS-promoted remineralization of initial enamel caries in vitro. J Dent Res 93:520–524. https://doi.org/10.1177/0022034514522815

    Article  PubMed  Google Scholar 

  58. Featherstone J (2004) The continuum of dental caries—evidence for a dynamic disease process. J Dent Res 83:C39–C42. https://doi.org/10.1111/j.1572-0241.2002.05793.x

    Article  PubMed  Google Scholar 

  59. Deng DT, Ten Cate J (2004) Demineralization of dentin by Streptococcus mutans biofilms grown in the constant depth film fermentor. Caries Res 38:54–61. https://doi.org/10.1159/000073921

    Article  PubMed  Google Scholar 

  60. Skrtic D, Hailer A, Takagi S, Antonucci J, Eanes E (1996) Quantitative assessment of the efficacy of amorphous calcium phosphate/methacrylate composites in remineralizing caries-like lesions artificially produced in bovine enamel. J Dent Res 75:1679–1686. https://doi.org/10.1177/00220345960750091001

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81800965, L. K. N, and 81991501, L. J. Y.), Sichuan Science and Technology (2017SZ0030), Fundamental Research Funds 2018SCU12016 (L. K. N), China Postdoctoral Foundation 2018M643507 (L. K. N), Research Fund of West China School/Hospital of Stomatology Sichuan University (WCHS-201705, L. K. N, and RCDWJS2021-14, G. Y.), Research Fund of Chinese Stomatological Association CSA-R2018-06 (L. K. N), Miaozi Project in Science and Technology Innovation Program of Sichuan Province (2019037, SYT, and 20-YCG045, G. Y.), University of Maryland School of Dentistry bridging fund (HX), and University of Maryland Baltimore seed grant (HX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenchen Zhou or Jiyao Li.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the University of Maryland Baltimore Institutional Review Board and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Kunneng Liang and Yuan Gao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, K., Gao, Y., Tao, S. et al. Dentin remineralization in acidic solution without initial calcium phosphate ions via poly(amido amine) and calcium phosphate nanocomposites after fluid challenges. Clin Oral Invest 26, 1517–1530 (2022). https://doi.org/10.1007/s00784-021-04124-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04124-y

Keywords

Navigation