Skip to main content

Advertisement

Log in

Comparison of marginal and internal fit of three-unit implant-supported fixed prosthetic substructures fabricated using CAD/CAM systems

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

This study compared the marginal and internal fit of implant-supported fixed dentures fabricated using CAD/CAM systems.

Materials and methods

A lower jaw model representing partial edentulism was produced. Two dental implants were inserted in the area of teeth 35 and 37, onto which cemented abutments were screwed. The model was scanned using a laboratory scanner and transferred to a design software program for substructure fabrication. Sixty substructures were fabricated out of each group for six substructure types (n = 10), cast Co-Cr (control), milling Co-Cr, laser sintering Co-Cr, titanium (Ti), zirconium, and polyetheretherketone (PEEK) substructures. The marginal and internal fit was evaluated using a silicone replica viewed under a stereomicroscope. The data were analyzed using the statistical package program for social sciences (SPSS, Chicago, IL, USA, v. 17) at a significance level of 0.05. Marginal and internal gaps were compared using the one-way ANOVA test and Tukey’s post hoc test. The differences between abutment teeth were determined using the independent sample t-test.

Results

There was a significant difference in the marginal gap between PEEK and Ti groups (p < 0.05) but no difference between other groups (p > 0.05). There was a significant difference in the internal gap between PEEK, laser sintering Co-Cr, and milling Co-Cr groups (< 0.05) but no difference between other groups (p > 0.05). The PEEK group had a higher marginal gap than the Ti group and a higher internal gap than the DMLS Co-Cr group (< 0.05).

Conclusion

All substructures have a marginal and internal fit within acceptable clinical limits.

Clinical relevance

This in vitro study suggests that materials and techniques used in CAD/CAM systems improve the fitting accuracy of implant-supported fixed restorations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu QB, Leu MC, Schmitt SM (2006) Rapid prototyping in dentistry: technology and application. Int J Adv Manuf Technol 29:317–335. https://doi.org/10.1007/s00170-005-2523-2

    Article  Google Scholar 

  2. Duret F, Preston JD (1991) CAD/CAM imaging in dentistry. Curr Opin Dent 1(2):150–154

    PubMed  Google Scholar 

  3. Bae SY, Park JY, Jeong ID, Kim HY, Kim JH, Kim WC (2017) Three-dimensional analysis of marginal and internal fit of copings fabricated with polyetherketoneketone (PEEK) and zirconia. J Prosthodont Res 61:106–112. https://doi.org/10.1016/j.jpor.2016.07.005

    Article  PubMed  Google Scholar 

  4. Li RWK, Chow TW, Matinlinna JP (2014) Ceramic dental biomaterials and CAD/CAM technology state of the art. J Prosthodont Res 58(4):208–216. https://doi.org/10.1016/j.jpor.2014.07.003

    Article  PubMed  Google Scholar 

  5. Spitznagel FA, Boldt J, Gierthmuehlen PC (2018) CAD/CAM ceramic restorative materials for natural teeth. J Dent Res 97(10):1082–1091. https://doi.org/10.1177/0022034518779759

    Article  PubMed  Google Scholar 

  6. Quante K, Ludwig K, Kern M (2008) Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology. Dent Mater 24:1311–1315. https://doi.org/10.1016/j.dental.2008.02.011

    Article  PubMed  Google Scholar 

  7. Tamac E, Toksavul S, Toman M (2014) Clinical marginal and internal adaptation of CAD/CAM milling, laser sintering, and cast metal ceramic crowns. J Prosthet Dent 112:909–913. https://doi.org/10.1016/j.prosdent.2013.12.020

    Article  PubMed  Google Scholar 

  8. Al-Jubuori O, Azari A (2015) An introduction to dental digitizers in dentistry. Systematic review J Chem Pharm Res 7(8):10–20

    Google Scholar 

  9. Strub JR, Rekow ED, Witkowski S (2006) Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc 137(9):1289–1296. https://doi.org/10.14219/jada.archive.2006.0389

  10. Sun J, Zhang FQ (2012) The application of rapid prototyping in prosthodontics. J Prosthodont 21:641–644. https://doi.org/10.1111/j.1532-849X.2012.00888.x

    Article  PubMed  Google Scholar 

  11. Deckers J, Vleugels J, Kruth J (2014) Additive manufacturing of ceramics: a review. J Ceram Sci Tech 5(4):245–260. https://doi.org/10.4416/JCST2014-00032

    Article  Google Scholar 

  12. Edgar J, Tint SJ (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Johnson Matthey Technol Rev 59:193–198. https://doi.org/10.1595/205651315X688406

    Article  Google Scholar 

  13. Yildirim B (2020) Effect of porcelain firing and cementation on the marginal fit of implant-supported metal-ceramic restorations fabricated by additive or subtractive manufacturing methods. J Prosthet Dent 124(4):476.e1-476.e6. https://doi.org/10.1016/j.prosdent.2020.03.014

    Article  Google Scholar 

  14. Park JK, Kim HY, Kim WC, Kim JH (2016) Evaluation of the fit of metal ceramic restorations fabricated with a pre-sintered soft alloy. J Prosthet Dent 116:909–915. https://doi.org/10.1016/j.prosdent.2016.03.024

    Article  PubMed  Google Scholar 

  15. Daou EE, Ounsi H, Ozcan M, Husain NA, Salameh Z (2018) Marginal and internal fit of pre-sintered Co-Cr and zirconia 3-unit fixed dental prostheses as measured using microcomputed tomography. J Prosthet Dent 120:409–414. https://doi.org/10.1016/j.prosdent.2018.01.006

    Article  PubMed  Google Scholar 

  16. Gurel K, Toksavul S, Toman M, Tamac E (2019) In vitro marginal and internal adaptation of metal-ceramic crowns with cobalt-chrome and titanium framework fabricated with CAD/CAM and casting technique. Niger J Clin Pract 22(6):812–816. https://doi.org/10.4103/njcp.njcp_570_18

    Article  PubMed  Google Scholar 

  17. Wang RR, Fenton A (1996) Titanium for prosthodontic applications: a review of the literature. Quintessence Int 27:401–408

    PubMed  Google Scholar 

  18. Papathanasiou I, Kamposiora P, Papavasiliou G, Ferrari M (2020) The use of PEEK in digital prosthodontics: a narrative review. BMC Oral Health 20(1):217. https://doi.org/10.1186/s12903-020-01202-7

    Article  PubMed  PubMed Central  Google Scholar 

  19. Suzuki S, Katsuta Y, Ueda K, Watanabe F (2020) Marginal and internal fit of three-unit zirconia fixed dental prostheses: effects of prosthesis design, cement space, and zirconia type. J Prosthodont Res 64:460–467. https://doi.org/10.1016/j.jpor.2019.12.005

    Article  PubMed  Google Scholar 

  20. Arezoobakhsh A, Shayegh SS, Ghomi AJ, Hakimaneh SMR (2020) Comparison of marginal and internal fit of 3-unit zirconia frameworks fabricated with CAD-CAM technology using direct and indirect digital scans. J Prosthet Dent 123:105–112. https://doi.org/10.1016/j.prosdent.2018.10.023

    Article  PubMed  Google Scholar 

  21. Schriwer C, Skjold A, Gjerdet NR, Øilo M (2017) Monolithic zirconia dental crowns. Internal fit, margin quality, fracture mode and load at fracture. Dent Mater 33:1012–1020. https://doi.org/10.1016/j.dental.2017.06.009

    Article  PubMed  Google Scholar 

  22. Najeeb S, Zafar MS, Khurshid Z, Siddiqui FJ (2016) Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 60(1):12–19. https://doi.org/10.1016/j.jpor.2015.10.001

    Article  PubMed  Google Scholar 

  23. Stawarczyk B, Beuer F, Wimmer T, Jahn D, Sener B, Roos M, Schmidlin PR (2013) Polyetheretherketone - a suitable material for fixed dental prostheses? J Biomed Mater Res B Appl Biomater 101:1209–1216. https://doi.org/10.1002/jbm.b.32932

    Article  PubMed  Google Scholar 

  24. Kaleli N, Ural C, Ozkoylu G, Duran I (2019) Effect of layer thickness on the marginal and internal adaptation of laser-sintered metal frameworks. J Prosthet Dent 121:922–928. https://doi.org/10.4047/jap.2020.12.3.124

    Article  PubMed  Google Scholar 

  25. Holmes JR, Bayne SC, Holland GA, Sulik WD (1989) Considerations in measurement of marginal fit. J Prosthet Dent 62(4):405–408. https://doi.org/10.1016/0022-3913(89)90170-4

    Article  PubMed  Google Scholar 

  26. Kokubo Y, Ohkubo C, Tsumita M, Miyashita A, Von Steyern PV, Fukushima S (2005) Clinical marginal and internal gaps of Procera AllCeram crowns. J Oral Rehabil 32:526–530. https://doi.org/10.1111/j.1365-2842.2005.01458.x

    Article  PubMed  Google Scholar 

  27. Ucar Y, Akova T, Akyil MS, Brantley WA (2009) Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: laser-sintered Co-Cr crowns. J Prosthet Dent 102:253–259. https://doi.org/10.1016/S0022-3913(09)60165-7

    Article  PubMed  Google Scholar 

  28. e Silva JSA, Erdelt K, Edelhoff D, Araújo É, Stimmelmayr M, Vieira LCC, Güth J-F (2014) Marginal and internal fit of four-unit zirconia fixed dental prostheses based on digital and conventional impression techniques. Clin Oral Investig 18:515–523. https://doi.org/10.1007/s00784-013-0987-2

    Article  Google Scholar 

  29. Komine F, Iwai T, Kobayashi K, Matsumura H (2007) Marginal and internal adaptation of zirconium dioxide ceramic copings and crowns with different finish line designs. Dent Mater J 26(5):659–664. https://doi.org/10.4012/dmj.26.659

    Article  PubMed  Google Scholar 

  30. Sun J, Zhang F-Q (2012) The application of rapid prototyping in prosthodontics. J Prosthodont 21(8):641–644. https://doi.org/10.1111/j.1532-849X.2012.00888.x

    Article  PubMed  Google Scholar 

  31. Sorensen JA (1990) A standardized method for determination of crown margin fidelity. J Prosthet Dent 64:18–24. https://doi.org/10.1016/0022-3913(90)90147-5

    Article  PubMed  Google Scholar 

  32. Nawafleh NA, Mack F, Evans J, Mackay J, Hatamleh MM (2013) Accuracy and reliability of methods to measure marginal adaptation of crowns and FDPs: a literature review. J Prosthodont 22(5):419–28. https://doi.org/10.1111/jopr.12006

    Article  PubMed  Google Scholar 

  33. Son K, Lee S, Kang SH, Park J, Lee KB, Jeon M, Yun BJ (2019) A comparison study of marginal and internal fit assessment methods for fixed dental prostheses. J Clin Med 8(6):785. https://doi.org/10.3390/jcm8060785

    Article  PubMed Central  Google Scholar 

  34. Groten M, Axmann D, Pröbster L, Weber H (2000) Determination of the minimum number of marginal gap measurements required for practical in vitro testing. J Prosthet Dent 83(1):40–49. https://doi.org/10.1016/s0022-3913(00)70087-4

    Article  PubMed  Google Scholar 

  35. Gassino G, Barone Monfrin S, Scanu M, Spina G, Preti G (2004) Marginal adaptation of fixed prosthodontics: a new 360-degree external examination procedure. Int J Prosthodont 17(2):218–223

    PubMed  Google Scholar 

  36. Park JY, Jeong ID, Lee JJ, Bae SY, Kim JH, Kim WC (2016) In vitro assessment of the marginal and internal fits of interim implant restorations fabricated with different methods. J Prosthet Dent 116:536–542. https://doi.org/10.1016/j.prosdent.2016.03.012

    Article  PubMed  Google Scholar 

  37. Ates SM, YesilDuymus Z (2016) Influence of tooth preparation design on fitting accuracy of cad-cam based restorations. J Esthet Restor Dent 28:238–246. https://doi.org/10.1111/jerd.12208

    Article  PubMed  Google Scholar 

  38. Wang W, Chang J, Wang HM, Gu XH (2020) Effects of precementation on minimizing residual cement around the marginal area of dental implants. J Prosthet Dent 123:622–629. https://doi.org/10.1016/j.prosdent.2019.04.010

    Article  PubMed  Google Scholar 

  39. Colpani JT, Borba M, Della Bona A (2013) Evaluation of marginal and internal fit of ceramic crown copings. Dent Mater 29(2):174–180. https://doi.org/10.1016/j.dental.2012.10.012

    Article  PubMed  Google Scholar 

  40. Att W, Komine F, Gerds T, Strub JR (2009) Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. J Prosthet Dent 101:239–247. https://doi.org/10.1016/S0022-3913(09)60047-0

    Article  PubMed  Google Scholar 

  41. De Jager N, Pallav P, Feilzer AJ (2004) The apparent increase of the Young’s modulus in thin cement layers. Dent Mater 20:457–462. https://doi.org/10.1016/j.dental.2003.07.002

    Article  PubMed  Google Scholar 

  42. Pasali B, Sarac D, Kaleli N, Sarac YS (2018) Evaluation of marginal fit of single implant-supported metal-ceramic crowns prepared by using presintered metal blocks. J Prosthet Dent 119:257–262. https://doi.org/10.1016/j.prosdent.2017.03.015

    Article  PubMed  Google Scholar 

  43. de França DGB, Morais MHS, das Neves FD, Barbosa GA (2015) Influence of CAD/CAM on the fit accuracy of implant-supported zirconia and cobalt-chromium fixed dental prostheses. J Prosthet Dent 113:22–28. https://doi.org/10.1016/j.prosdent.2014.07.010

    Article  PubMed  Google Scholar 

  44. Araujo GMD, França DGBD, Silva Neto JP, Barbosa GAS (2015) Passivity of conventional and CAD/CAM fabricated implant frameworks. Braz Dent J 26:277–283. https://doi.org/10.1590/0103-6440201300145

    Article  PubMed  Google Scholar 

  45. Hong MH, Min BK, Lee DH, Kwon TY (2019) Marginal fit of metal-ceramic crowns fabricated by using a casting and two selective laser melting processes before and after ceramic firing. J Prosthet Dent 122:475–481. https://doi.org/10.1016/j.prosdent.2019.03.002

    Article  PubMed  Google Scholar 

  46. Kim EH, Lee DH, Kwon SM, Kwon TY (2017) A microcomputed tomography evaluation of the marginal fit of cobalt-chromium alloy copings fabricated by new manufacturing techniques and alloy systems. J Prosthet Dent 117:393–399. https://doi.org/10.1016/j.prosdent.2016.08.002

    Article  PubMed  Google Scholar 

  47. Dahl BE, Ronold HJ, Dahl JE (2017) Internal fit of single crowns produced by CAD-CAM and lost-wax metal casting technique assessed by the triple-scan protocol. J Prosthet Dent 117:400–404. https://doi.org/10.1016/j.prosdent.2016.06.017

    Article  PubMed  Google Scholar 

  48. Akcin ET, Güncü MB, Aktas G, Aslan Y (2018) Effect of manufacturing techniques on the marginal and internal fit of cobalt-chromium implant-supported multiunit frameworks. J Prosthet Dent 120:715–720. https://doi.org/10.1016/j.prosdent.2018.02.012

    Article  PubMed  Google Scholar 

  49. Örtorp A, Jönsson D, Mouhsen A, von Steyern PV (2011) The fit of cobalt–chromium three-unit fixed dental prostheses fabricated with four different techniques: a comparative in vitro study. Dent Mater 27(4):356–363. https://doi.org/10.1016/j.dental.2010.11.015

    Article  PubMed  Google Scholar 

  50. Nesse H, Ulstein DM, Vaage MM, Oilo M (2015) Internal and marginal fit of cobalt-chromium fixed dental prostheses fabricated with 3 different techniques. J Prosthet Dent 114:686–692. https://doi.org/10.1016/j.prosdent.2015.05.007

    Article  PubMed  Google Scholar 

  51. Witkowski S, Komine F, Gerds T (2006) Marginal accuracy of titanium copings fabricated by casting and CAD/CAM techniques. J Prosthet Dent 96(1):47–52. https://doi.org/10.1016/j.prosdent.2006.05.013

    Article  PubMed  Google Scholar 

  52. Pompa G, Di Carlo S, De Angelis F, Cristalli MP, Annibali S (2015) Comparison of conventional methods and laser-assisted rapid prototyping for manufacturing fixed dental prostheses: an in vitro study. Biomed Res Int 2015:318097. https://doi.org/10.1155/2015/318097

    Article  PubMed  PubMed Central  Google Scholar 

  53. Abduo J, Lyons K, Waddell N, Bennani V, Swain M (2012) A comparison of fit of CNC-milled titanium and zirconia frameworks to implants. Clin Implant Dent Relat Res 14(Suppl 1):e20-29. https://doi.org/10.1111/j.1708-8208.2010.00334.x

    Article  PubMed  Google Scholar 

  54. Romeo E, Iorio M, Storelli S, Camandona M, Abati S (2009) Marginal adaptation of full-coverage CAD/CAM restorations: in vitro study using a non-destructive method. Minerva Stomatol 58(3):61–72

    PubMed  Google Scholar 

  55. Prasad R, Al-Kheraif AA (2013) Three-dimensional accuracy of CAD/CAM titanium and ceramic superstructures for implant abutments using spiral scan microtomography. Int J Prosthodont 26(5):451–457. https://doi.org/10.11607/ijp.3302

  56. Keul C, Stawarczyk B, Erdelt K-J, Beuer F, Edelhoff D, Güth JF (2014) Fit of 4-unit FDPs made of zirconia and CoCr-alloy after chairside and labside digitalization–a laboratory study. Dent Mater 30:400–407. https://doi.org/10.1016/j.dental.2014.01.006

    Article  PubMed  Google Scholar 

  57. Ueda K, Beuer F, Stimmelmayr M, Erdelt K, Keul C, Güth JF (2016) Fit of 4-unit FDPs from CoCr and zirconia after conventional and digital impressions. Clin Oral Investig 20:283–289. https://doi.org/10.1007/s00784-015-1513-5

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Research Fund of the Recep Tayyip Erdogan University, Rize, Turkey (Project no: TDH-2019–1014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabit Melih Ates.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayikci, O., Ates, S.M. Comparison of marginal and internal fit of three-unit implant-supported fixed prosthetic substructures fabricated using CAD/CAM systems. Clin Oral Invest 26, 1283–1291 (2022). https://doi.org/10.1007/s00784-021-04102-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04102-4

Keywords

Navigation