Skip to main content

Advertisement

Log in

Platform technologies for regenerative endodontics from multifunctional biomaterials to tooth-on-a-chip strategies

  • Review
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of this review is to highlight recent progress in the field of biomaterials-mediated dental pulp tissue engineering. Specifically, we aim to underscore the critical design criteria of biomaterial platforms that are advantageous for pulp tissue engineering, discuss models for preclinical evaluation, and present new and innovative multifunctional strategies that hold promise for clinical translation.

Materials and methods

The current article is a comprehensive overview of recent progress over the last 5 years. In detail, we surveyed the literature in regenerative pulp biology, including novel biologic and biomaterials approaches, and those that combined multiple strategies, towards more clinically relevant models. PubMed searches were performed using the keywords: “regenerative dentistry,” “dental pulp regeneration,” “regenerative endodontics,” and “dental pulp therapy.”

Results

Significant contributions to the field of regenerative dentistry have been made in the last 5 years, as evidenced by a significant body of publications. We chose exemplary studies that we believe are progressive towards clinically translatable solutions. We close this review with an outlook towards the future of pulp regeneration strategies and their clinical translation.

Conclusions

Current clinical treatments lack functional and predictable pulp regeneration and are more focused on the treatment of the consequences of pulp exposure, rather than the restoration of healthy dental pulp.

Clinical relevance

Clinically, there is great demand for bioinspired biomaterial strategies that are safe, efficacious, and easy to use, and clinicians are eager for their clinical translation. In particular, we place emphasis on strategies that combine favorable angiogenesis, mineralization, and functional tissue formation, while limiting immune reaction, risk of microbial infection, and pulp necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Schmalz G, Smith AJ (2014) Pulp development, repair, and regeneration: challenges of the transition from traditional dentistry to biologically based therapies. J Endod 40(4 Suppl):S2-5. https://doi.org/10.1016/j.joen.2014.01.018

    Article  PubMed  Google Scholar 

  2. Orti V, Collart-Dutilleul PY, Piglionico S, Pall O, Cuisinier F, Panayotov I (2018) pulp regeneration concepts for nonvital teeth: from tissue engineering to clinical approaches. Tissue Eng Part B Rev 24(6):419–442. https://doi.org/10.1089/ten.TEB.2018.0073

    Article  PubMed  Google Scholar 

  3. Adnan S, Ullah R (2018) Top-cited articles in regenerative endodontics: a bibliometric analysis. J Endod 44(11):1650–1664. https://doi.org/10.1016/j.joen.2018.07.015

    Article  PubMed  Google Scholar 

  4. Morotomi T, Washio A, Kitamura C (2019) Current and future options for dental pulp therapy. Jpn Dent Sci Rev 55(1):5–11. https://doi.org/10.1016/j.jdsr.2018.09.001

    Article  PubMed  Google Scholar 

  5. Organization WH (2017) Oral health. https://www.who.int/publications/i/item/WHO-NMH-NHD-17.12. Accessed 19 November 2020

  6. Organization WH (2003) Dental diseases and oral health. https://www.who.int/oral_health/publications/en/orh_fact_sheet.pdf. Accessed 19 November 2020

  7. Li X, Kolltveit KM, Tronstad L, Olsen I (2000) Systemic diseases caused by oral infection. Clin Microbiol Rev 13(4):547–558. https://doi.org/10.1128/cmr.13.4.547-558.2000

    Article  PubMed  PubMed Central  Google Scholar 

  8. Albuquerque MT, Valera MC, Nakashima M, Nor JE, Bottino MC (2014) Tissue-engineering-based strategies for regenerative endodontics. J Dent Res 93(12):1222–1231. https://doi.org/10.1177/0022034514549809

    Article  PubMed  PubMed Central  Google Scholar 

  9. Itoh Y, Sasaki JI, Hashimoto M, Katata C, Hayashi M, Imazato S (2018) Pulp regeneration by 3-dimensional dental pulp stem cell constructs. J Dent Res 97(10):1137–1143. https://doi.org/10.1177/0022034518772260

    Article  PubMed  Google Scholar 

  10. Bottino MC, Pankajakshan D, Nor JE (2017) Advanced scaffolds for dental pulp and periodontal regeneration. Dent Clin North Am 61(4):689–711. https://doi.org/10.1016/j.cden.2017.06.009

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yildirim S, Fu SY, Kim K, Zhou H, Lee CH, Li A, Kim SG, Wang S, Mao JJ (2011) Tooth regeneration: a revolution in stomatology and evolution in regenerative medicine. Int J Oral Sci 3(3):107–116. https://doi.org/10.4248/IJOS11042

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bansal R, Jain A (2015) Current overview on dental stem cells applications in regenerative dentistry. J Nat Sci Biol Med 6(1):29–34. https://doi.org/10.4103/0976-9668.149074

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fischer NG, Munchow EA, Tamerler C, Bottino MC, Aparicio C (2020) Harnessing biomolecules for bioinspired dental biomaterials. J Mater Chem B 8(38):8713–8747. https://doi.org/10.1039/d0tb01456g

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bjorndal L, Simon S, Tomson PL, Duncan HF (2019) Management of deep caries and the exposed pulp. Int Endod J 52(7):949–973. https://doi.org/10.1111/iej.13128

    Article  PubMed  Google Scholar 

  15. de Souza Costa CA, Hebling J, Scheffel DL, Soares DG, Basso FG, Ribeiro AP (2014) Methods to evaluate and strategies to improve the biocompatibility of dental materials and operative techniques. Dent Mater 30(7):769–784. https://doi.org/10.1016/j.dental.2014.04.010

    Article  PubMed  Google Scholar 

  16. Hanna SN, Perez Alfayate R, Prichard J (2020) Vital pulp therapy an insight over the available literature and future expectations. Eur Endod J 5(1):46–53. https://doi.org/10.14744/eej.2019.44154

    Article  PubMed  PubMed Central  Google Scholar 

  17. Medina-Fernandez I, Celiz AD (2019) Acellular biomaterial strategies for endodontic regeneration. Biomater Sci 7(2):506–519. https://doi.org/10.1039/c8bm01296b

    Article  PubMed  Google Scholar 

  18. Ricucci D, Loghin S, Lin LM, Spangberg LS, Tay FR (2014) Is hard tissue formation in the dental pulp after the death of the primary odontoblasts a regenerative or a reparative process? J Dent 42(9):1156–1170. https://doi.org/10.1016/j.jdent.2014.06.012

    Article  PubMed  Google Scholar 

  19. Altaii M, Richards L, Rossi-Fedele G (2017) Histological assessment of regenerative endodontic treatment in animal studies with different scaffolds: a systematic review. Dent Traumatol 33(4):235–244. https://doi.org/10.1111/edt.12338

    Article  PubMed  Google Scholar 

  20. Nosrat A, Kolahdouzan A, Khatibi AH, Verma P, Jamshidi D, Nevins AJ, Torabinejad M (2019) Clinical, radiographic, and histologic outcome of regenerative endodontic treatment in human teeth using a novel collagen-hydroxyapatite scaffold. J Endod 45(2):136–143. https://doi.org/10.1016/j.joen.2018.10.012

    Article  PubMed  Google Scholar 

  21. Yoo C, Vines JB, Alexander G, Murdock K, Hwang P, Jun HW (2014) Adult stem cells and tissue engineering strategies for salivary gland regeneration: a review. Biomater Res 18:9. https://doi.org/10.1186/2055-7124-18-9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Saoud TM, Zaazou A, Nabil A, Moussa S, Aly HM, Okazaki K, Rosenberg PA, Lin LM (2015) Histological observations of pulpal replacement tissue in immature dog teeth after revascularization of infected pulps. Dent Traumatol 31(3):243–249. https://doi.org/10.1111/edt.12169

    Article  PubMed  Google Scholar 

  23. Huang GT, Garcia-Godoy F (2014) Missing concepts in de novo pulp regeneration. J Dent Res 93(8):717–724. https://doi.org/10.1177/0022034514537829

    Article  PubMed  PubMed Central  Google Scholar 

  24. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926. https://doi.org/10.1126/science.8493529

    Article  PubMed  Google Scholar 

  25. Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60(2):184–198. https://doi.org/10.1016/j.addr.2007.08.041

    Article  PubMed  Google Scholar 

  26. Swanson WB, Ma PX (2020) 1.4.7 - Textured and porous biomaterials. In: Wagner WR, Sakiyama-Elbert SE, Zhang G, Yaszemski MJ (eds) Biomaterials Science (Fourth Edition). Academic Press, pp 601-622. https://doi.org/https://doi.org/10.1016/B978-0-12-816137-1.00039-8

  27. Gupte MJ, Swanson WB, Hu J, Jin X, Ma H, Zhang Z, Liu Z, Feng K, Feng G, Xiao G, Hatch N, Mishina Y, Ma PX (2018) Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomater 82:1–11. https://doi.org/10.1016/j.actbio.2018.10.016

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mousa M, Evans ND, Oreffo ROC, Dawson JI (2018) Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity. Biomaterials 159:204–214. https://doi.org/10.1016/j.biomaterials.2017.12.024

    Article  PubMed  Google Scholar 

  29. Galler KM, Widbiller M (2017) Perspectives for cell-homing approaches to engineer dental pulp. J Endod 43(9S):S40–S45. https://doi.org/10.1016/j.joen.2017.06.008

    Article  PubMed  Google Scholar 

  30. Yelick PC, Sharpe PT (2019) Tooth bioengineering and regenerative dentistry. J Dent Res 98(11):1173–1182. https://doi.org/10.1177/0022034519861903

    Article  PubMed  PubMed Central  Google Scholar 

  31. Soares DG, Rosseto HL, Scheffel DS, Basso FG, Huck C, Hebling J, de Souza Costa CA (2017) Odontogenic differentiation potential of human dental pulp cells cultured on a calcium-aluminate enriched chitosan-collagen scaffold. Clin Oral Investig 21(9):2827–2839. https://doi.org/10.1007/s00784-017-2085-3

    Article  PubMed  Google Scholar 

  32. Soares DG, Anovazzi G, Bordini EAF, Zuta UO, Silva Leite MLA, Basso FG, Hebling J, de Souza Costa CA (2018) Biological analysis of simvastatin-releasing chitosan scaffold as a cell free system for pulp dentin regeneration. J Endod 44(6):971-976-e971. https://doi.org/10.1016/j.joen.2018.02.014

    Article  Google Scholar 

  33. Soares DG, Zhang Z, Mohamed F, Eyster TW, de Souza Costa CA, Ma PX (2018) Simvastatin and nanofibrous poly(l-lactic acid) scaffolds to promote the odontogenic potential of dental pulp cells in an inflammatory environment. Acta Biomater 68:190–203. https://doi.org/10.1016/j.actbio.2017.12.037

    Article  PubMed  Google Scholar 

  34. Soares DG, Bordini EAF, Cassiano FB, Bronze-Uhle ES, Pacheco LE, Zabeo G, Hebling J, Lisboa-Filho PN, Bottino MC, de Souza Costa CA (2020) Characterization of novel calcium hydroxide-mediated highly porous chitosan-calcium scaffolds for potential application in dentin tissue engineering. J Biomed Mater Res B Appl Biomater 108(6):2546–2559. https://doi.org/10.1002/jbm.b.34586

    Article  PubMed  Google Scholar 

  35. Sakai VT, Cordeiro MM, Dong Z, Zhang Z, Zeitlin BD, Nor JE (2011) Tooth slice/scaffold model of dental pulp tissue engineering. Adv Dent Res 23(3):325–332. https://doi.org/10.1177/0022034511405325

    Article  PubMed  PubMed Central  Google Scholar 

  36. da Fonseca Roberti Garcia L, Pontes EC, Basso FG, Hebling J, de Souza Costa CA, Soares DG, (2016) Transdentinal cytotoxicity of resin-based luting cements to pulp cells. Clin Oral Investig 20(7):1559–1566. https://doi.org/10.1007/s00784-015-1630-1

    Article  Google Scholar 

  37. Leite M, Costa CAS, Duarte RM, Andrade AKM, Soares DG (2018) Bond strength and cytotoxicity of a universal adhesive according to the hybridization strategies to dentin. Braz Dent J 29(1):68–75. https://doi.org/10.1590/0103-6440201801698

    Article  PubMed  Google Scholar 

  38. Leite ML, Soares DG, de Oliveira Duque CC, Bordini EAF, Anovazzi G, Basso FG, Spolidorio DMP, Hebling J, de Souza Costa CA (2019) Positive influence of simvastatin used as adjuvant agent for cavity lining. Clin Oral Investig 23(9):3457–3469. https://doi.org/10.1007/s00784-018-2757-7

    Article  PubMed  Google Scholar 

  39. Murray PE, Lumley PJ, Ross HF, Smith AJ (2000) Tooth slice organ culture for cytotoxicity assessment of dental materials. Biomaterials 21(16):1711–1721. https://doi.org/10.1016/s0142-9612(00)00056-9

    Article  PubMed  Google Scholar 

  40. Laurent P, Camps J, About I (2012) Biodentine(TM) induces TGF-beta1 release from human pulp cells and early dental pulp mineralization. Int Endod J 45(5):439–448. https://doi.org/10.1111/j.1365-2591.2011.01995.x

    Article  PubMed  Google Scholar 

  41. Pedano MS, Li X, Jeanneau C, Ghosh M, Yoshihara K, Van Landuyt K, About I, Van Meerbeek B (2019) Survival of human dental pulp cells after 4-week culture in human tooth model. J Dent 86:33–40. https://doi.org/10.1016/j.jdent.2019.05.023

    Article  PubMed  Google Scholar 

  42. Li J, Rao Z, Zhao Y, Xu Y, Chen L, Shen Z, Bai Y, Lin Z, Huang Q (2020) A decellularized matrix hydrogel derived from human dental pulp promotes dental pulp stem cell proliferation, migration, and induced multidirectional differentiation in vitro. J Endod 46(10):1438-1447.e1435. https://doi.org/10.1016/j.joen.2020.07.008

    Article  PubMed  Google Scholar 

  43. Tecles O, Laurent P, Aubut V, About I (2008) Human tooth culture: a study model for reparative dentinogenesis and direct pulp capping materials biocompatibility. J Biomed Mater Res B Appl Biomater 85(1):180–187. https://doi.org/10.1002/jbm.b.30933

    Article  PubMed  Google Scholar 

  44. Li X, Pedano MS, Camargo B, Hauben E, De Vleeschauwer S, Chen Z, De Munck J, Vandamme K, Van Landuyt K, Van Meerbeek B (2018) Experimental tricalcium silicate cement induces reparative dentinogenesis. Dent Mater 34(9):1410–1423. https://doi.org/10.1016/j.dental.2018.06.016

    Article  PubMed  Google Scholar 

  45. Swanson WB, Gong T, Zhang Z, Eberle M, Niemann D, Dong R, Rambhia KJ, Ma PX (2020) Controlled release of odontogenic exosomes from a biodegradable vehicle mediates dentinogenesis as a novel biomimetic pulp capping therapy. J Control Release 324:679–694. https://doi.org/10.1016/j.jconrel.2020.06.006

    Article  PubMed  PubMed Central  Google Scholar 

  46. Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S (2010) Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A 16(2):605–615. https://doi.org/10.1089/ten.TEA.2009.0518

    Article  PubMed  Google Scholar 

  47. Iohara K, Imabayashi K, Ishizaka R, Watanabe A, Nabekura J, Ito M, Matsushita K, Nakamura H, Nakashima M (2011) Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng Part A 17(15–16):1911–1920. https://doi.org/10.1089/ten.TEA.2010.0615

    Article  PubMed  Google Scholar 

  48. Rosa V, Zhang Z, Grande RH, Nor JE (2013) Dental pulp tissue engineering in full-length human root canals. J Dent Res 92(11):970–975. https://doi.org/10.1177/0022034513505772

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nakashima M, Iohara K, Bottino MC, Fouad AF, Nor JE, Huang GT (2019) Animal models for stem cell-based pulp regeneration: foundation for human clinical applications. Tissue Eng Part B Rev 25(2):100–113. https://doi.org/10.1089/ten.TEB.2018.0194

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith AJ, Nor JE (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34(8):962–969. https://doi.org/10.1016/j.joen.2008.04.009

    Article  PubMed  Google Scholar 

  51. Galler KM, Hartgerink JD, Cavender AC, Schmalz G, D’Souza RN (2012) A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Eng Part A 18(1–2):176–184. https://doi.org/10.1089/ten.TEA.2011.0222

    Article  PubMed  Google Scholar 

  52. Dissanayaka WL, Hargreaves KM, Jin L, Samaranayake LP, Zhang C (2015) The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A 21(3–4):550–563. https://doi.org/10.1089/ten.TEA.2014.0154

    Article  PubMed  Google Scholar 

  53. Silva CR, Babo PS, Gulino M, Costa L, Oliveira JM, Silva-Correia J, Domingues RMA, Reis RL, Gomes ME (2018) Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration. Acta Biomater 77:155–171. https://doi.org/10.1016/j.actbio.2018.07.035

    Article  PubMed  Google Scholar 

  54. Mu X, Shi L, Pan S, He L, Niu Y, Wang X (2020) A customized self-assembling peptide hydrogel-wrapped stem cell factor targeting pulp regeneration rich in vascular-like structures. ACS Omega 5(27):16568–16574. https://doi.org/10.1021/acsomega.0c01266

    Article  PubMed  PubMed Central  Google Scholar 

  55. Xiao S, Zhao T, Wang J, Wang C, Du J, Ying L, Lin J, Zhang C, Hu W, Wang L, Xu K (2019) Gelatin methacrylate (GelMA)-based hydrogels for cell transplantation: an effective strategy for tissue engineering. Stem Cell Rev Rep 15(5):664–679. https://doi.org/10.1007/s12015-019-09893-4

    Article  PubMed  Google Scholar 

  56. Monteiro N, Thrivikraman G, Athirasala A, Tahayeri A, França CM, Ferracane JL, Bertassoni LE (2018) Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry. Dent Mater 34(3):389–399. https://doi.org/10.1016/j.dental.2017.11.020

    Article  PubMed  Google Scholar 

  57. Khayat A, Monteiro N, Smith EE, Pagni S, Zhang W, Khademhosseini A, Yelick PC (2017) GelMA-encapsulated hDPSCs and HUVECs for dental pulp regeneration. J Dent Res 96(2):192–199. https://doi.org/10.1177/0022034516682005

    Article  PubMed  Google Scholar 

  58. Athirasala A, Lins F, Tahayeri A, Hinds M, Smith AJ, Sedgley C, Ferracane J, Bertassoni LE (2017) A novel strategy to engineer pre-vascularized full-length dental pulp-like tissue constructs. Sci Rep 7(1):3323. https://doi.org/10.1038/s41598-017-02532-3

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang R, Xie L, Wu H, Yang T, Zhang Q, Tian Y, Liu Y, Han X, Guo W, He M, Liu S, Tian W (2020) Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomater 113:305–316. https://doi.org/10.1016/j.actbio.2020.07.012

    Article  PubMed  Google Scholar 

  60. Zhang Z, Marson RL, Ge Z, Glotzer SC, Ma PX (2015) Simultaneous nano- and microscale control of nanofibrous microspheres self-assembled from star-shaped polymers. Adv Mater 27(26):3947–3952. https://doi.org/10.1002/adma.201501329

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li X, Ma C, Xie X, Sun H, Liu X (2016) Pulp regeneration in a full-length human tooth root using a hierarchical nanofibrous microsphere system. Acta Biomater 35:57–67. https://doi.org/10.1016/j.actbio.2016.02.040

    Article  PubMed  Google Scholar 

  62. Ma PX, Zhang R (1999) Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 46(1):60–72. https://doi.org/10.1002/(sici)1097-4636(199907)46:1%3c60::aid-jbm7%3e3.0.co;2-h

    Article  PubMed  Google Scholar 

  63. Wang X, Song G, Lou T (2010) Fabrication and characterization of nano composite scaffold of poly(L-lactic acid)/hydroxyapatite. J Mater Sci Mater Med 21(1):183–188. https://doi.org/10.1007/s10856-009-3855-5

    Article  PubMed  Google Scholar 

  64. Kuang R, Zhang Z, Jin X, Hu J, Gupte MJ, Ni L, Ma PX (2015) Nanofibrous spongy microspheres enhance odontogenic differentiation of human dental pulp stem cells. Adv Healthc Mater 4(13):1993–2000. https://doi.org/10.1002/adhm.201500308

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang W, Dang M, Zhang Z, Hu J, Eyster TW, Ni L, Ma PX (2016) Dentin regeneration by stem cells of apical papilla on injectable nanofibrous microspheres and stimulated by controlled BMP-2 release. Acta Biomater 36:63–72. https://doi.org/10.1016/j.actbio.2016.03.015

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kuang R, Zhang Z, Jin X, Hu J, Shi S, Ni L, Ma PX (2016) Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. Acta Biomater 33:225–234. https://doi.org/10.1016/j.actbio.2016.01.032

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sabrah AH, Yassen GH, Liu WC, Goebel WS, Gregory RL, Platt JA (2015) The effect of diluted triple and double antibiotic pastes on dental pulp stem cells and established Enterococcus faecalis biofilm. Clin Oral Investig 19(8):2059–2066. https://doi.org/10.1007/s00784-015-1423-6

    Article  PubMed  Google Scholar 

  68. Sotomil JM, Munchow EA, Pankajakshan D, Spolnik KJ, Ferreira JA, Gregory RL, Bottino MC (2019) Curcumin-a natural medicament for root canal disinfection: effects of irrigation, drug release, and photoactivation. J Endod 45(11):1371–1377. https://doi.org/10.1016/j.joen.2019.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kamocki K, Nor JE, Bottino MC (2015) Dental pulp stem cell responses to novel antibiotic-containing scaffolds for regenerative endodontics. Int Endod J 48(12):1147–1156. https://doi.org/10.1111/iej.12414

    Article  PubMed  Google Scholar 

  70. Albuquerque MT, Evans JD, Gregory RL, Valera MC, Bottino MC (2016) Antibacterial TAP-mimic electrospun polymer scaffold: effects on P. gingivalis-infected dentin biofilm. Clin Oral Investig 20:2387–393. https://doi.org/10.1007/s00784-015-1577-2

    Article  Google Scholar 

  71. Pankajakshan D, Albuquerque MT, Evans JD, Kamocka MM, Gregory RL, Bottino MC (2016) Triple antibiotic polymer nanofibers for intracanal drug delivery: effects on dual species biofilm and cell function. J Endod 42(10):1490–1495. https://doi.org/10.1016/j.joen.2016.07.019

    Article  PubMed  PubMed Central  Google Scholar 

  72. Karczewski A, Feitosa SA, Hamer EI, Pankajakshan D, Gregory RL, Spolnik KJ, Bottino MC (2018) Clindamycin-modified triple antibiotic nanofibers: a stain-free antimicrobial intracanal drug delivery system. J Endod 44(1):155–162. https://doi.org/10.1016/j.joen.2017.08.024

    Article  PubMed  Google Scholar 

  73. Bottino MC, Albuquerque MTP, Azabi A, Munchow EA, Spolnik KJ, Nor JE, Edwards PC (2019) A novel patient-specific three-dimensional drug delivery construct for regenerative endodontics. J Biomed Mater Res B Appl Biomater 107(5):1576–1586. https://doi.org/10.1002/jbm.b.34250

    Article  PubMed  Google Scholar 

  74. Ribeiro JS, Daghrery A, Dubey N, Li C, Mei L, Fenno JC, Schwendeman A, Aytac Z, Bottino MC (2020) Hybrid antimicrobial hydrogel as injectable therapeutics for oral infection ablation. Biomacromolecules 21(9):3945–3956. https://doi.org/10.1021/acs.biomac.0c01131

    Article  PubMed  Google Scholar 

  75. Ribeiro JS, Bordini EAF, Ferreira JA, Mei L, Dubey N, Fenno JC, Piva E, Lund RG, Schwendeman A, Bottino MC (2020) Injectable MMP-responsive nanotube-modified gelatin hydrogel for dental infection ablation. ACS Appl Mater Interfaces 12(14):16006–16017. https://doi.org/10.1021/acsami.9b22964

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wang YY, Chatzistavrou X, Faulk D, Badylak S, Zheng L, Papagerakis S, Ge L, Liu H, Papagerakis P (2015) Biological and bactericidal properties of Ag-doped bioactive glass in a natural extracellular matrix hydrogel with potential application in dentistry. Eur Cell Mater 29:342-355. https://doi.org/10.22203/ecm.v029a26

  77. Qu T, Jing J, Jiang Y, Taylor RJ, Feng JQ, Geiger B, Liu X (2014) Magnesium-containing nanostructured hybrid scaffolds for enhanced dentin regeneration. Tissue Eng Part A 20(17–18):2422–2433. https://doi.org/10.1089/ten.TEA.2013.0741

    Article  PubMed  PubMed Central  Google Scholar 

  78. Okamoto M, Matsumoto S, Sugiyama A, Kanie K, Watanabe M, Huang H, Ali M, Ito Y, Miura J, Hirose Y, Uto K, Ebara M, Kato R, Yamawaki-Ogata A, Narita Y, Kawabata S, Takahashi Y, Hayashi M (2020) Performance of a biodegradable composite with hydroxyapatite as a scaffold in pulp tissue repair. Polymers (Basel) 12 (4). https://doi.org/10.3390/polym12040937

  79. Soares DG, Rosseto HL, Basso FG, Scheffel DS, Hebling J, Costa CA (2016) Chitosan-collagen biomembrane embedded with calcium-aluminate enhances dentinogenic potential of pulp cells. Braz Oral Res 30(1):e54. https://doi.org/10.1590/1807-3107BOR-2016.vol30.0054

    Article  PubMed  Google Scholar 

  80. Bordini EAF, Cassiano FB, Silva ISP, Usberti FR, Anovazzi G, Pacheco LE, Pansani TN, Leite ML, Hebling J, de Souza Costa CA, Soares DG (2017) Synergistic potential of 1alpha,25-dihydroxyvitamin D3 and calcium-aluminate-chitosan scaffolds with dental pulp cells. Clin Oral Investig 24(2):663–674. https://doi.org/10.1007/s00784-019-02906-z

    Article  Google Scholar 

  81. Cassiano FB, Soares DG, Bordini EAF, Anovazzi G, Hebling J, Costa CAS (2020) Simvastatin-enriched macro-porous chitosan-calcium-aluminate scaffold for mineralized tissue regeneration. Braz Dent J 31(4):385–391. https://doi.org/10.1590/0103-6440202003252

    Article  PubMed  Google Scholar 

  82. Dubey N, Ferreira JA, Malda J, Bhaduri SB, Bottino MC (2020) Extracellular matrix/amorphous magnesium phosphate bioink for 3D Bioprinting of craniomaxillofacial bone tissue. ACS Appl Mater Interfaces 12(21):23752–23763. https://doi.org/10.1021/acsami.0c05311

    Article  PubMed  PubMed Central  Google Scholar 

  83. Li F, Liu X, Zhao S, Wu H, Xu HH (2014) Porous chitosan bilayer membrane containing TGF-beta1 loaded microspheres for pulp capping and reparative dentin formation in a dog model. Dent Mater 30(2):172–181. https://doi.org/10.1016/j.dental.2013.11.005

    Article  PubMed  Google Scholar 

  84. Daghrery A, Aytac Z, Dubey N, Mei L, Schwendeman A, Bottino MC (2020) Electrospinning of dexamethasone/cyclodextrin inclusion complex polymer fibers for dental pulp therapy. Colloids Surf B Biointerfaces 191:111011. https://doi.org/10.1016/j.colsurfb.2020.111011

    Article  PubMed  PubMed Central  Google Scholar 

  85. Niu X, Liu Z, Hu J, Rambhia KJ, Fan Y, Ma PX (2016) Microspheres assembled from chitosan-graft-poly(lactic acid) micelle-like core-shell nanospheres for distinctly controlled release of hydrophobic and hydrophilic biomolecules. Macromol Biosci 16(7):1039–1047. https://doi.org/10.1002/mabi.201600020

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ha M, Athirasala A, Tahayeri A, Menezes PP, Bertassoni LE (2020) Micropatterned hydrogels and cell alignment enhance the odontogenic potential of stem cells from apical papilla in-vitro. Dent Mater 36(1):88–96. https://doi.org/10.1016/j.dental.2019.10.013

    Article  PubMed  Google Scholar 

  87. Pankajakshan D, Voytik-Harbin SL, Nor JE, Bottino MC (2020) Injectable highly tunable oligomeric collagen matrices for dental tissue regeneration. ACS Appl Bio Mater 3(2):859–868. https://doi.org/10.1021/acsabm.9b00944

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dubey N, Ferreira JA, Daghrery A, Aytac Z, Malda J, Bhaduri SB, Bottino MC (2020) Highly tunable bioactive fiber-reinforced hydrogel for guided bone regeneration. Acta Biomater 113:164–176. https://doi.org/10.1016/j.actbio.2020.06.011

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cooper LF, Ravindran S, Huang CC, Kang M (2019) A role for exosomes in craniofacial tissue engineering and regeneration. Front Physiol 10:1569. https://doi.org/10.3389/fphys.2019.01569

    Article  PubMed  Google Scholar 

  90. Huang CC, Narayanan R, Alapati S, Ravindran S (2016) Exosomes as biomimetic tools for stem cell differentiation: applications in dental pulp tissue regeneration. Biomaterials 111:103–115. https://doi.org/10.1016/j.biomaterials.2016.09.029

    Article  PubMed  PubMed Central  Google Scholar 

  91. Xian X, Gong Q, Li C, Guo B, Jiang H (2018) Exosomes with highly angiogenic potential for possible use in pulp regeneration. J Endod 44(5):751–758. https://doi.org/10.1016/j.joen.2017.12.024

    Article  PubMed  Google Scholar 

  92. Zhang S, Yang Y, Jia S, Chen H, Duan Y, Li X, Wang S, Wang T, Lyu Y, Chen G, Tian W (2020) Exosome-like vesicles derived from Hertwig’s epithelial root sheath cells promote the regeneration of dentin-pulp tissue. Theranostics 10(13):5914–5931. https://doi.org/10.7150/thno.43156

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chen J, Cui C, Qiao X, Yang B, Yu M, Guo W, Tian W (2017) Treated dentin matrix paste as a novel pulp capping agent for dentin regeneration. J Tissue Eng Regen Med 11(12):3428–3436. https://doi.org/10.1002/term.2256

    Article  PubMed  Google Scholar 

  94. Holiel AA, Mahmoud EM, Abdel-Fattah WM, Kawana KY (2020) Histological evaluation of the regenerative potential of a novel treated dentin matrix hydrogel in direct pulp capping. Clin Oral Investig. https://doi.org/10.1007/s00784-020-03521-z

    Article  PubMed  Google Scholar 

  95. Salehi S, Cooper P, Smith A, Ferracane J (2016) Dentin matrix components extracted with phosphoric acid enhance cell proliferation and mineralization. Dent Mater 32(3):334–342. https://doi.org/10.1016/j.dental.2015.11.004

    Article  PubMed  Google Scholar 

  96. Zhang R, Cooper PR, Smith G, Nor JE, Smith AJ (2011) Angiogenic activity of dentin matrix components. J Endod 37(1):26–30. https://doi.org/10.1016/j.joen.2010.08.042

    Article  PubMed  Google Scholar 

  97. Smith JG, Smith AJ, Shelton RM, Cooper PR (2015) Dental pulp cell behavior in biomimetic environments. J Dent Res 94(11):1552–1559. https://doi.org/10.1177/0022034515599767

    Article  PubMed  Google Scholar 

  98. Galler KM, Widbiller M, Buchalla W, Eidt A, Hiller KA, Hoffer PC, Schmalz G (2016) EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells. Int Endod J 49(6):581–590. https://doi.org/10.1111/iej.12492

    Article  PubMed  Google Scholar 

  99. Widbiller M, Eidt A, Hiller KA, Buchalla W, Schmalz G, Galler KM (2017) Ultrasonic activation of irrigants increases growth factor release from human dentine. Clin Oral Investig 21(3):879–888. https://doi.org/10.1007/s00784-016-1824-1

    Article  PubMed  Google Scholar 

  100. Widbiller M, Driesen RB, Eidt A, Lambrichts I, Hiller KA, Buchalla W, Schmalz G, Galler KM (2018) Cell homing for pulp tissue engineering with endogenous dentin matrix proteins. J Endod 44(6):956-962-e952. https://doi.org/10.1016/j.joen.2018.02.011

    Article  Google Scholar 

  101. Huang KH, Chen YW, Wang CY, Lin YH, Wu YA, Shie MY, Lin CP (2018) Enhanced capability of bone morphogenetic protein 2-loaded mesoporous calcium silicate scaffolds to induce odontogenic differentiation of human dental pulp cells. J Endod 44(11):1677–1685. https://doi.org/10.1016/j.joen.2018.08.008

    Article  PubMed  Google Scholar 

  102. Athirasala A, Tahayeri A, Thrivikraman G, Franca CM, Monteiro N, Tran V, Ferracane J, Bertassoni LE (2018) A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry. Biofabrication 10(2):024101. https://doi.org/10.1088/1758-5090/aa9b4e

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yang JW, Shen YC, Lin KC, Cheng SJ, Chen SL, Chen CY, Kumar PV, Lin SF, Lu HE, Chen GY (2020) Organ-on-a-chip: opportunities for assessing the toxicity of particulate matter. front bioeng biotechnol 8:519. https://doi.org/10.3389/fbioe.2020.00519

  104. França CM, Tahayeri A, Rodrigues NS, Ferdosian S, Puppin Rontani RM, Sereda G, Ferracane JL, Bertassoni LE (2020) The tooth on-a-chip: a microphysiologic model system mimicking the biologic interface of the tooth with biomaterials. Lab Chip 20(2):405–413. https://doi.org/10.1039/c9lc00915a

    Article  PubMed  Google Scholar 

  105. Duarte Campos DF, Zhang S, Kreimendahl F, Kopf M, Fischer H, Vogt M, Blaeser A, Apel C, Esteves-Oliveira M (2020) Hand-held bioprinting for de novo vascular formation applicable to dental pulp regeneration. Connect Tissue Res 61(2):205–215. https://doi.org/10.1080/03008207.2019.1640217

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Figures (Figs. 1 and 2) in this manuscript were partially created with Bio Render.

Funding

The work was supported by the National Institutes of Health/National Institute for Dental and Craniofacial Research (NIH/NIDCR, grants F30-DE029359 to WBS and R01DE026578 to MCB), the São Paulo Research Foundation – FAPESP (grant 2016/15674-5), and by the Coordination for the Improvement of Higher Education Personnel – CAPES (Finance Code 001). The content of this review is solely the responsibility of the authors and does not necessarily represent the official view of the funding sources. We apologize to colleagues whose work we could not discuss due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco C. Bottino.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, D.G., Bordini, E.A.F., Swanson, W.B. et al. Platform technologies for regenerative endodontics from multifunctional biomaterials to tooth-on-a-chip strategies. Clin Oral Invest 25, 4749–4779 (2021). https://doi.org/10.1007/s00784-021-04013-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04013-4

Keywords

Navigation