Study population
In the canton of Basel-Stadt, Switzerland, annual dental examinations are mandatory for all children visiting a compulsory school. Compulsory schooling in Switzerland lasts for 11 years, including 2 years of nursery school. Therefore, all children above the age of 4 visiting a compulsory school during the school year 2017/2018, i.e. between August 1, 2017, and July 31, 2018, were included in this retrospective analysis.
Ethical approval was obtained from the Ethics Committee for the Northwest- and Central Switzerland (EKNZ 2016–02024).
Dental examinations
Teams consisting of ten paediatric dentists and dental assistants of the University Center for Dental Medicine Basel (UZB) conducted the dental examinations. The dentists are employed at the UZB and mainly perform these mandatory examinations on behalf of the canton on a routine basis. All examiners were initially trained in the diagnosis of caries by experienced dentists.
Up to 4th grade, the schoolchildren brushed their teeth under the supervision of trained oral health instructors prior to examinations. The children were then examined in a mobile dental practice. This specially designed facility enables the dentists to perform the examination in a habitual environment for the children and, at the same time, provides a professional dental unit setting with dental examination light. No magnification glasses were used. If needed, teeth were cleaned before examination with a tissue. To confirm the visual diagnosis of caries, a sickle probe (Maillefer Nr. 6, Maillefer, Ballaigues, Switzerland) was used. No bitewings or other X-ray examinations were made for caries diagnostics [17].
Caries data were entered on-site in an electronic database (StomaNet, Asparagus Engineering AG, Andelfingen, Switzerland), whereas the corresponding medical history data of the children were recorded in a separate medical management system (Vitodent, Vitodata AG, Oberohringen, Switzerland).
Data collection
For analysis, all data were exported in Excel (Microsoft Corporation, Redmont, WA, USA). The DMFT and dmft indexes were used to describe the caries experience with caries lesions requiring treatment, i.e. lesions extending into the dentin (D3,4) only. After calculating the respective dmft and DMFT values, both numbers were added, and the total caries experience was presented as a dichotomous variable: 1 (i.e. dmft + DMFT > 0) representing a caries experience or 0 (i.e. dmft + DMFT = 0) representing a caries-free dentition. To determine the presence or absence of untreated carious lesions, the dt/DT components were used in a similar manner: 1 (i.e. dt + DT > 0) representing the presence of active caries and 0 (i.e. dt + DT = 0) representing the absence of active caries at the time of examination.
Other variables included gender, birth date, date of examination, nationality and postal code of the place of residence as well as the respective dentist who conducted the dental examination. The age at the time of examination was calculated by the difference between the date of examination and the date of birth. To determine siblings of the same family, names, addresses and telephone numbers of the legal guardians were compared and manually coded with a unique number. Schoolchildren with an incomplete dataset were excluded from the study. The data were anonymised prior to the statistical analysis.
Statistical analysis
Descriptive statistics are presented as counts and frequencies for categorical data and mean (standard deviation, SD) and median (interquartile range, IQR) for metric variables as appropriate. Overall p values correspond to T-test (for means), Kruskal–Wallis test (for median) and Chi-squared or exact Fisher test when the expected frequencies are less than 5 in some cell.
To estimate the variability between families, dentists and postal code of the place of residence, generalised linear mixed effects models were performed. Results are reported as quantiles of the respective distributions.
In order to estimate the within family effect of the outcomes 'caries experience' or ‘active caries’ (yes, no), logistic regression was performed. Caries of the first child was predicted from age, nationality and gender. Caries of the second child was predicted from caries of the first child, age, gender, nationality and age difference to the first child. Similar procedures were performed for subsequent children. Age and age difference were modelled as a five-knot restricted cubic spline to detect possible nonlinearities [18]. Results are reported as odds ratios (OR) with 95% confidence intervals (CI 95%) and p values. For ordinal or metric predictors, OR are presented comparing the predictor from the first to the third quartile.
A p value < 0.05 is considered significant. All evaluations were done using the statistical software R (R Foundation for Statistical Computing, Vienna, Austria, R version 3.6.1.).