Skip to main content

Advertisement

Log in

Enhanced bone formation of calvarial bone defects by low-intensity pulsed ultrasound and recombinant human bone morphogenetic protein-9: a preliminary experimental study in rats

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to evaluate the combined effects of recombinant human bone morphogenetic protein - 9 (rhBMP-9) loaded onto absorbable collagen sponges (ACS) and low-intensity pulsed ultrasound (LIPUS) on bone formation in rat calvarial defects.

Materials and methods

Circular calvarial defects were surgically created in 18 Wistar rats, which were divided into LIPUS-applied (+) and LIPUS-non-applied (−) groups. The 36 defects in each group received ACS implantation (ACS group), ACS with rhBMP-9 (rhBMP-9/ACS group), or surgical control (control group), yielding the following six groups: ACS (+/−), rhBMP-9/ACS (+/−), and control (+/−). The LIPUS-applied groups received daily LIPUS exposure starting immediately after surgery. At 4 weeks, animals were sacrificed and their defects were investigated histologically and by microcomputed tomography.

Results

Postoperative clinical healing was uneventful at all sites. More new bone was observed in the LIPUS-applied groups compared with the LIPUS-non-applied groups. Newly formed bone area (NBA)/total defect area (TA) in the ACS (+) group (46.49 ± 7.56%) was significantly greater than that observed in the ACS (−) (34.31 ± 5.68%) and control (−) (31.13 ± 6.74%) groups (p < 0.05). The rhBMP-9/ACS (+) group exhibited significantly greater bone volume, NBA, and NBA/TA than the rhBMP-9/ACS (−) group (2.46 ± 0.65 mm3 vs. 1.76 ± 0.44 mm3, 1.25 ± 0.31 mm2 vs. 0.88 ± 0.22 mm2, and 62.80 ± 11.87% vs. 42.66 ± 7.03%, respectively) (p < 0.05). Furthermore, the rhBMP-9/ ACS (+) group showed the highest level of bone formation among all groups.

Conclusion

Within their limits, it can be concluded that LIPUS had osteopromotive potential and enhanced rhBMP-9-induced bone formation in calvarial defects of rats.

Clinical relevance

The use of rhBMP-9 with LIPUS stimulation can be a potential bone regenerative therapy for craniofacial/peri-implant bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lieberman JR, Daluiski A, Einhorn TA (2002) The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am 84:1032–1044

    Article  PubMed  Google Scholar 

  2. Deschaseaux F, Sensebe L, Heymann D (2009) Mechanisms of bone repair and regeneration. Trends Mol Med 15:417–429

    Article  PubMed  Google Scholar 

  3. Lademann F, Hofbauer LC, Rauner M (2020) The bone morphogenetic protein pathway: the osteoclastic perspective. Front Cell Dev Biol 8:586031. https://doi.org/10.3389/fcell.2020.586031 eCollection 2020

    Article  PubMed  PubMed Central  Google Scholar 

  4. Abe E, Yamamoto M, Taguchi Y, Lecka-Czernik B, O’Brien CA, Economides AN, Stahl N, Jilka RL, Manolagas SC (2000) Essential requirement of BMPs-2/4 for both osteoblast and osteoclast formation in murine bone marrow cultures from adult mice: antagonism by noggin. J Bone Miner Res 15:663–673

    Article  PubMed  Google Scholar 

  5. Fiorellini JP, Howell TH, Cochran D, Malmquist J, Lilly LC, Spagnoli D, Toljanic J, Jones A, Nevins M (2005) Randomized study evaluating recombinant human bone morphogenetic protein-2 for extraction socket augmentation. J Periodontol 76:605–613

    Article  PubMed  Google Scholar 

  6. McKay WF, Peckham SM, Badura JM (2007) A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE® Bone Graft). Int Orthop 31:729–734

    Article  PubMed  PubMed Central  Google Scholar 

  7. Herford AS, Boyne PJ (2008) Reconstruction of mandibular continuity defects with bone morphogenetic protein-2 (rhBMP-2). J Oral Maxillofac Surg 66:616–624

    Article  PubMed  Google Scholar 

  8. Triplett RG, Nevins M, Marx RE, Spagnoli DB, Oates TW, Moy PK, Boyne PJ (2009) Pivotal, randomized evaluation of recombinant human bone morphogenetic protein-2/absorbable collagen sponge and autogenous bone graft for maxillary sinus floor augmentation. J Oral Maxillofac Surg 67:1947–1960

    Article  PubMed  Google Scholar 

  9. Katanec D, Granić M, Majstorović M, Trampus Z, Pandurić DG (2014) Use of recombinant human bone morphogenetic protein (rhBMP2) in bilateral alveolar ridge augmentation: case report. Coll Antropol 38:325–330

    PubMed  Google Scholar 

  10. de Freitas RM, Susin C, Tamashiro WM, Chaves de Souza JA, Marcantonio C, Wikesjö UM, Pereira LA, Marcantonio E Jr (2016) Histological analysis and gene expression profile following augmentation of the anterior maxilla using rhBMP-2/ACS versus autogenous bone graft. J Clin Periodontol 43:1200–1207

    Article  PubMed  Google Scholar 

  11. Ben Amara H, Lee JW, Kim JJ, Kang YM, Kang EJ, Koo KT (2017) Influence of thBMP-2 on guided bone regeneration for placement and functional loading of dental implants: a radiographic and histologic study in dogs. Int J Oral Maxillofac Implants 32:e265–ee27

    Article  PubMed  Google Scholar 

  12. Nakamura T, Shirakata Y, Shinohara Y, Miron RJ, Hasegawa-Nakamura K, Fujioka-Kobayashi M, Noguchi K (2017) Comparison of the effects of recombinant human bone morphogenetic protein -2 and -9 on bone formation in rat calvarial critical -size defects. Clin Oral Investig 21:2671–2679

    Article  PubMed  Google Scholar 

  13. Grey ZJ, Howie RN, Durham EL, Hall SR, Helke KL, Steed MB, LaRue AC, Muise-Helmericks RC, Cray JJ (2019) Sub-clinical dose of bone morphogenetic protein-2 does not precipitate rampant, sustained inflammatory response in bone wound healing. Wound Repair Regen 27:335–344

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zara JN, Siu RK, Zhang X, Shen J, Ngo R, Lee M, Li W, Chiang M, Chung J, Kwak J, Wu BM, Ting K, Soo C (2011) High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo. Tissue Eng Part A 17:1389–1399

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, Luu HH, An N, Breyer B, Vanichakarn P, Szatkowski JP, Park JY, He TC (2003) Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 85:1544–1552

    Article  PubMed  Google Scholar 

  16. Kang Q, Sun MH, Cheng H, Peng Y, Montag AG, Deyrup AT, Jiang W, Luu HH, Luo J, Szatkowski JP, Vanichakarn P, Park JY, Li Y, Haydon RC, He TC (2004) Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther 11:1312–1320

    Article  PubMed  Google Scholar 

  17. Shinohara Y, Nakamura T, Shirakata Y, Noguchi K (2016) Bone healing capabilities of recombinant human bone morphogenetic protein-9 (rhBMP-9) with a chitosan or collagen carrier in rat calvarial defects. Dent Mater J 35:454–460

    Article  PubMed  Google Scholar 

  18. Fujioka-Kobayashi M, Abd EL Raouf M, Saulacic N, Kobayashi E, Zhang Y, Schaller B, Miron RJ (2018) Superior bone-inducing potential of rhBMP9 compared to rhBMP2. J Biomed Mater Res A 106:1561–1574

    Article  PubMed  Google Scholar 

  19. Miron RJ, Nakamura T, Shirakata Y, Saulacic N, Noguchi K, Zhang Y, Fujioka-Kobayashi M (2019) Next-generation bone morphogenetic protein 9: the future of bone regeneration? In: Miron RJ, Zhang Y (eds) Next-Generation biomaterials for bone & periodontal regeneration, 1st edn. Quintessence Publishing Co Inc, Batavia, pp 255–264

    Google Scholar 

  20. Bolander ME (1992) Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med 200:165–170

    Article  PubMed  Google Scholar 

  21. Boerckel JD, Uhring BA, Willett NJ, Huebsch N, Guldberg RE (2011) Mechanical regulation of vascular growth and tissue regeneration in vivo. Proc Natl Acad Sci U S A 108:E674–E680

    Article  PubMed  PubMed Central  Google Scholar 

  22. Doan N, Reher P, Meghji S, Harris M (1999) In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes. J Oral Maxillofac Surg 57:409–419

    Article  PubMed  Google Scholar 

  23. Uddin SM, Qin YX (2013) Enhancement of osteogenic differentiation and proliferation in human mesenchymal stem cells by a modified low intensity ultrasound stimulation under stimulated microgravity. PLoS One 8:e73914

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hasuike A, Sato S, Udagawa A, Ando K, Arai Y, Ito K (2011) In vivo bone regenerative effect of low-intensity pulsed ultrasound in rat calvarial defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111:e12–e20

    Article  PubMed  Google Scholar 

  25. Shirakata Y, Imafuji T, Sena K, Shinohara Y, Nakamura T, Noguchi K (2020) Periodontal tissue regeneration after low-intensity pulsed ultrasound stimulation with or without intra-marrow perforation in two-wall intra-bony defects -A pilot study in dogs. J Clin Periodontol 47:54–63

    Article  PubMed  Google Scholar 

  26. Busse JW, Bhandari M, Kulkami AV, Tunks E (2002) The effect of low-intensity pulsed ultrasound therapy on time to fracture healing: a meta-analysis. CMAJ 166:437–441

    PubMed  PubMed Central  Google Scholar 

  27. Angle SR, Sena K, Sumner DR, Virkus WW, Virdi AS (2014) Combined use of low-intensity pulsed ultrasound and rhBMP-2 to enhance bone formation in a rat model of critical size defect. J Orthop Trauma 28:605–611

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jung YJ, Kim R, Ham HJ, Park SI, Lee MY, Kim J, Hwang J, Park MS, Yoo SS, Maeng LS, Chang W, Chung YA (2015) Focused low-intensity pulsed ultrasound enhances bone regeneration in rat calvarial bone defect through enhancement of cell proliferation. Ultrasound Med Biol 41:999–1007

    Article  PubMed  Google Scholar 

  29. Suzuki A, Takayama T, Suzuki N, Kojima T, Ota N, Asano S, Ito K (2009) Daily low-intensity pulsed ultrasound stimulates production of bone morphogenetic protein in ROS 17/2.8 cells. J Oral Sci 51:29–36

    Article  PubMed  Google Scholar 

  30. Suzuki A, Takayama T, Suzuki N, Sato M, Fukuda T, Ito K (2009) Daily low-intensity pulsed ultrasound-mediated osteogenic differentiation in rat osteoblasts. Acta Biochim Biophys Sin 41:108–115

    Article  PubMed  Google Scholar 

  31. Ling L, Wei T, He L, Wang Y, Wang Y, Feng X, Zhang W, Xiong Z (2017) Low-intensity pulsed ultrasound activates ERK1/2 and PI3K-Akt signaling pathway and promotes the proliferation of human amnion-derived mesenchymal stem cells. Cell Prolif 50:e12383

    Article  PubMed Central  Google Scholar 

  32. Warden SJ, Favaloro JM, Bennell KL, McMeeken JM, Ng KW, Zajac JD, Wark JD (2001) Low-intensity pulsed ultrasound stimulates a bone-forming response in UMR-106 cells. Biochem Biophys Res Commun 286:443–450

    Article  PubMed  Google Scholar 

  33. Sena K, Leven RM, Mazhar K, Sumner DR, Virdi AS (2005) Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells. Ultrasound Med Biol 31:703–708

    Article  PubMed  Google Scholar 

  34. Takayama T, Suzuki N, Ikeda K, Shimada T, Suzuki A, Maeno M, Otsuka K, Ito K (2007) Low-intensity pulsed ultrasound stimulates osteogenic differentiation in ROS 17/2.8 cells. Life Sci 80:965–971

    Article  PubMed  Google Scholar 

  35. Fávaro-Pípi E, Bossini P, de Oliveira P, Ribeiro JU, Tim C, Parizotto NA, Alves JM, Ribeiro DA, de Araujo HSS, Renno ACM (2010) Low-intensity pulsed ultrasound produced an increase of osteogenic genes expression during the process of bone healing in rats. Ultrasound Med Biol 36:2057–2064

    Article  PubMed  Google Scholar 

  36. San’Anna EF, Leven RM, Virdi AS, Sumner DR (2005) Effect of low-intensity pulsed ultrasound and BMP-2 on rat bone marrow stromal cell gene expression. J Orthop Res 23:646–652

    Article  Google Scholar 

  37. Reher P, Doan N, Bradnock B, Meghji S, Harris M (1999) Effect of ultrasound on the production of IL-8, basic FGF and VEGF. Cytokine 11:416–423

    Article  PubMed  Google Scholar 

  38. Maung WM, Nakata H, Miura M, Miyasaka M, Kim YK, Kasugai S, Kuroda S (2020) Low-intensity pulsed ultrasound stimulates osteogenic differentiation of periosteal cells in vitro. Tissue Eng Part A. https://doi.org/10.1089/ten.TEA.2019.0331

  39. Fujioka-Kobayashi M, Sawada K, Kobayashi E, Schaller B, Zhang Y, Miron RJ (2016) Recombinant human bone morphogenetic protein 9 (rhBMP9) induced osteoblastic behavior on a collagen membrane compared with rhBMP2. J Periodontol 87:e101–e107

    Article  PubMed  Google Scholar 

  40. Fujioka-Kobayashi M, Sawada K, Kobayashi E, Schaller B, Zhang Y, Miron RJ (2017) Osteogenic potential of rhBMP9 combined with a bovine-derived natural bone mineral scaffold compared to rhBMP2. Clin Oral Implants Res 28:381–387

    Article  PubMed  Google Scholar 

  41. Lamplot JD, Qin J, Nan G, Wang J, Liu X, Yin L, Tomal J, Li R, Shui W, Zhang H, Kim SH, Zhang W, Zhang J, Kong Y, Denduluri S, Rogers MR, Pratt A, Haydon RC, Luu HH, Angeles J, Shi LL, He TC (2013) BMP9 signaling in stem cell differentiation and osteogenesis. Am J Stem Cells 2:1–21

    PubMed  PubMed Central  Google Scholar 

  42. Liao J, Wei Q, Zou Y, Fan J, Song D, Cui J, Zhang W, Zhu Y, Ma C, Hu X, Qu X, Chen L, Yu X, Zhang Z, Wang C, Zhao C, Zeng Z, Zhang R, Yan S, Wu T, Wu X, Shu Y, Lei J, Li Y, Luu HH, Lee MJ, Reid RR, Ameer GA, Wolf JM, He TC, Huang W (2017) Notch signaling augments BMP-9-induced bone formation by promoting the osteogenesis-angiogenesis coupling process in mesenchymal stem cells (MSCs). Cell Physiol Biochem 41:1905–1923

    Article  PubMed  Google Scholar 

  43. Tang N, Song WX, Luo J, Luo X, Chen J, Sharff KA, Bi Y, He BC, Huang JY, Zhu GH, Su YX, Jiang W, Tang M, He Y, Wang Y, Chen L, Zuo GW, Shen J, Pan X, Reid RR, Luu HH, Haydon RC, He TC (2009) BMP-9 induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signaling. J Cell Mol Med 8B:2448–2464

    Article  Google Scholar 

  44. Kang Q, Song WX, Luo Q, Tang N, Luo J, Luo X, Shen J, Bi Y, He BC, Park JK, Jiang W, Tang Y, Huang J, Su Y, Zhu GH, He Y, Yin H, Hu Z, Wang Y, Chen L, Zuo GW, Pan X, Shen J, Vokes T, Reid RR, Haydon RC, He TC (2009) A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev 18:545–559

    Article  PubMed  Google Scholar 

  45. Li XL, Liu YB, Ma EG, Shen WX, Li H, Zhang YN (2015) Synergistic effect of BMP9 and TGF-β in the proliferation and differentiation of osteoblasts. Genet Mol Res 14:7605–7615

    Article  PubMed  Google Scholar 

  46. Zhao YF, Xu J, Wang WJ, Wang J, He JW, Li L, Dong Q, Xiao Y, Duan XL, Yang X, Liang YW, Song T, Tang M, Zhao D, Luo JY (2013) Activation of JNKs is essential for BMP9-induced osteogenic differentiation of mesenchymal stem cells. BMB Rep 46:422–427

    Article  PubMed  PubMed Central  Google Scholar 

  47. Eiraku N, Chiba N, Nakamura T, Amir MS, Seong CH, Ohnishi T, Kusuyama J, Noguchi K, Matsuguchi T (2019) BMP9 directly induces rapid GSK3-β phosphorylation in a Wnt-independent manner through classIPI3K-Akt axis in osteoblasts. FASEB J 33:12124–12134

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang Y, Hong S, Li M, Zhang J, Bi Y, He Y, Liu X, Nan G, Su Y, Zhu G, Li R, Zhang W, Wang J, Zhang H, Kong Y, Shui W, Wu N, He Y, Chen X, Luu HH, Haydon RC, Shi LL, He TC, Qin J (2013) Noggin resistance contributes to the potent osteogenic capability of BMP9 in mesenchymal stem cells. J Orthop Res 31:1796–1803

    Article  PubMed  Google Scholar 

  49. Nakamura T, Shinohara Y, Momozaki S, Yoshimoto T, Noguchi K (2013) Co-stimulation with bone morphogenetic protein-9 and FK506 induces remarkable osteoblastic differentiation in rat dedifferentiated fat cells. Biochem Biophys Res Commun 440:289–294

    Article  PubMed  Google Scholar 

  50. Yoshimaki T, Sato S, Kigami R, Tsuchiya N, Oka S, Arai Y, Ito K (2014) Bone regeneration by lactoferrin in non-critical-sized rat calvarial bone defects. J Med Biol Eng 34:256–260

    Article  Google Scholar 

  51. Khadra M, Kasem N, Haanaes HR, Ellingsen JE, Lyngstadaas SP (2004) Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97:693–700

    Article  PubMed  Google Scholar 

  52. Pellegrini G, Seol YJ, Gruber R, Giannobile WV (2009) Preclinical models for oral and periodontal reconstructive therapies. J Dent Res 88:1065–1076

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Edanz Group (https://en-author-services.edanzgroup.com/ac) for editing a draft of this manuscript.

Funding

This study was supported by Grants-in-Aid for Scientific Research C (No. 19 K10169) and Grant-in-Aid for Young Scientists (No. 18 K17089) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Shirakata.

Ethics declarations

Ethics approval

The experimental protocol was reviewed and approved by the ethical committee of the Animal Research Center of Kagoshima University, Japan (Approval No. D19011). This study conformed to the ARRIVE guidelines for preclinical animal studies.

Informed consent

For this kind of study, formal consent is not required.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imafuji, T., Shirakata, Y., Shinohara, Y. et al. Enhanced bone formation of calvarial bone defects by low-intensity pulsed ultrasound and recombinant human bone morphogenetic protein-9: a preliminary experimental study in rats. Clin Oral Invest 25, 5917–5927 (2021). https://doi.org/10.1007/s00784-021-03897-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-03897-6

Keywords

Navigation