Skip to main content

Advertisement

Log in

Can lithium disilicate ceramic crowns be fabricated on the basis of CBCT data?

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Evaluating the fit of CAD/CAM lithium disilicate ceramic crowns fabricated on basis of direct and indirect digitalization of impressions by CBCT or of dental casts.

Material and methods

A metal model with a molar chamfer preparation was digitized (n = 12 per group) in four ways: IOS—direct digitalization using an Intra-Oral scanner (CS3600), cone-beam computed tomography scan (CBCT 1)—indirect digitalization of impression (CBCT-CS9300), CBCT 2—indirect digitalization of impression (CBCT-CS8100), and Extra-Oral scanner (EOS)—indirect digitalization of gypsum-cast (CeramillMap400). Accuracy of 3D datasets was evaluated in relation to a reference dataset by best-fit superimposition. Marginal fit of lithium disilicate crowns after grinding was evaluated by replica technique. Significant differences were detected for 3D accuracy by Mann–Whitney U and for fit of crowns by One-way ANOVA followed by Scheffe’s post hoc (p = 0.05).

Results

3D analysis revealed mean positive and negative deviations for the groups IOS (− 0.011 ± 0.007 mm/0.010 ± 0.003 mm), CBCT 1 (− 0.046 ± 0.008 mm/0.093 ± 0.004 mm), CBCT 2 (− 0.049 ± 0.030 mm/0.072 ± 0.015 mm), and EOS (− 0.023 ± 0.007 mm/0.028 ± 0.007 mm). Marginal fit presented the results IOS (0.056 ± 0.022 mm), CBCT 1 (0.096 ± 0.034 mm), CBCT 2 (0.068 ± 0,026 mm), and EOS (0.051 ± 0.017 mm).

Conclusions

The marginal fit of EOS and IOS, IOS and CBCT 2, and CBCT 2 and CBCT 1 showed statistical differences. The marginal fit of CBCT 1 and CBCT 2 is within the range of clinical acceptance; however, it is significant inferior to EOS and IOS.

Clinical relevance

The use of a CBCT enables clinicians to digitize conventional impressions. Despite presenting results within clinical acceptable levels, the CBCT base method seems to be inferior to Intra-Oral scans or to scanning gypsum models regarding the resulting accuracy and fit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zimmerman M, Valcanaia A, Neiva G, Mehl A, Fasbinder D (2017) Digital evaluation of the fit of zirconia-reinforced lithium silicate crowns with a new three-dimensional approach. Quintessence Int 30:9–15. https://doi.org/10.3290/j.qi.a39402

    Article  Google Scholar 

  2. Hamza TA, Ezzat HA, El-Hossary MM, Katamish HA, Shokry TE, Rosenstiel SF (2013) Accuracy of ceramic restorations made with two CAD/CAM systems. J Prosthet Dent 109(2):83–87. https://doi.org/10.1016/S0022-3913(13)60020-7

    Article  PubMed  Google Scholar 

  3. Simeone P, Gracis S (2015) Eleven-year retrospective survival study of 275 veneered lithium disilicate single crowns. Int J Periodontics Restorative Dent 35(5):685–694. https://doi.org/10.11607/prd.2150.

    Article  PubMed  Google Scholar 

  4. Pieger S, Salman A, Bidra AS (2014) Clinical outcomes of lithium disilicate single crowns and partial fixed dental prostheses: a systematic review. J Prosthet Dent 112(1):22–30. https://doi.org/10.1016/j.prosdent.2014.01.005

    Article  PubMed  Google Scholar 

  5. Ng J, Ruse D, Wyatt CA (2014) Comparison of the marginal fit of crowns fabricated with digital and conventional methods. J Prosthet Dent 112(3):555–560. https://doi.org/10.1016/j.prosdent.2013.12.002

    Article  PubMed  Google Scholar 

  6. Abdel-Azim T, Rogers K, Elathamna E, Zandinejad A, Metz M, Morton D (2015) Comparison of the marginal fit of lithium disilicate crowns fabricated with CAD/CAM technology by using conventional impressions and two intraoral digital scanners. J Prosthet Dent 114(4):554–559. https://doi.org/10.1016/j.prosdent.2015.04.001

    Article  PubMed  Google Scholar 

  7. Kim JH, Jeong JH, Lee JH, Cho HW (2016) Fit of lithium disilicate crowns fabricated from conventional and digital impressions assessed with micro-CT. J Prosthet Dent 116(4):551–557. https://doi.org/10.1016/j.prosdent.2016.03.028

    Article  PubMed  Google Scholar 

  8. McLean JW, von Fraunhofer JA (1971) The estimation of cement film thickness by an in vivo technique. Br Dent J 131:107–111

    Article  Google Scholar 

  9. Janenko C, Smales RJ (1979) Anterior crowns and gingival health. Aust Dent J 24:225–230

    Article  Google Scholar 

  10. Belser UC, MacEntee MI, Richter WA (1985) Fit of three porcelain-fused-to-metal marginal designs in vivo: a scanning electron microscope study. J Prosthet Dent 53:24–29

    Article  Google Scholar 

  11. Sulaiman F, Chai J, Jameson LM, Wozniak WT (1997) A comparison of the marginal fit of In-Ceram, IPS Empress and Procera crowns. Int J Prosthodont 10:478–484

    PubMed  Google Scholar 

  12. Beschnidt SM, Strub JR (1999) Evaluation of the marginal accuracy of different all-ceramic crown systems after simulation in the artificial mouth. J Oral Rehabil 26:582–593

    Article  Google Scholar 

  13. Hunter AJ, Hunter AR (1990) Gingival crown margin configurations: a review and discussion. Part I: terminology and widths. J Prosthet Dent 64(5):548–552

    Article  Google Scholar 

  14. Contrepois M, Soenen A, Bartala M, Laviole O (2013) Marginal adaptation of ceramic crowns: a systematic review. J Prosthet Dent 110(6):447–454. https://doi.org/10.1016/j.prosdent.2013.08.003

    Article  PubMed  Google Scholar 

  15. Almeida e Silva JS, Erdelt K, Edelhoff D, Araújo É, Stimmelmayr M, Vieira LC, Güth JF (2014) Marginal and internal fit of four-unit zirconia fixed dental prostheses based on digital and conventional impression techniques. Clin Oral Investig 18(2):515–523. https://doi.org/10.1007/s00784-013-0987-2

    Article  PubMed  Google Scholar 

  16. Keul C, Stawarczyk B, Erdelt KJ, Beuer F, Edelhoff D, Güth JF (2014) Fit of 4-unit FDPs made of zirconia and CoCr-alloy after chairside and labside digitalization—a laboratory study. Dent Mater 30(4):400–407. https://doi.org/10.1016/j.dental.2014.01.006

    Article  PubMed  Google Scholar 

  17. Ender A, Zimmermann M, Attin T, Mehl A (2016) In vivo precision of conventional and digital methods for obtaining quadrant dental impressions. Clin Oral Investig 20(7):1495–1504. https://doi.org/10.1007/s00784-015-1641-y

    Article  PubMed  Google Scholar 

  18. Güth JF, Runkel C, Beuer F, Stimmelmayr M, Edelhoff D, Keul C (2017) Accuracy of five intraoral scanners compared to indirect digitalization. Clin Oral Investig 21(5):1445–1455. https://doi.org/10.1007/s00784-016-1902-4

    Article  PubMed  Google Scholar 

  19. Ender A, Mehl A (2013) Influence of scanning strategies on the accuracy of digital intraoral scanning systems. Int J Comput Dent 16(1):11–21

    PubMed  Google Scholar 

  20. Ender A, Attin T, Mehl A (2016) In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions. J Prosthet Dent 115(3):313–320. https://doi.org/10.1016/j.prosdent.2015.09.011

    Article  PubMed  Google Scholar 

  21. Güth JF, Edelhoff D, Schweiger J, Keul C (2016) A new method for the evaluation of the accuracy of full-arch digital impressions in vitro. Clin Oral Investig 20(7):1487–1494. https://doi.org/10.1007/s00784-015-1626-x

    Article  PubMed  Google Scholar 

  22. Kim SR, Kim CM, Jeong ID, Kim WC, Kim HY, Kim JH (2017) Evaluation of accuracy and repeatability using CBCT and a dental scanner by means of 3D software. Int J Comput Dent 20(1):65–73

    PubMed  Google Scholar 

  23. Robben J, Muallah J, Wesemann C, Nowak R, Mah J, Pospiech P, Bumann A (2017) Suitability and accuracy of CBCT model scan: an in vitro study. Int J Comput Dent 20(4):363–375

    PubMed  Google Scholar 

  24. Şeker E, Ozcelik TB, Rathi N, Yilmaz B (2016) Evaluation of marginal fit of CAD/CAM restorations fabricated through cone beam computerized tomography and laboratory scanner data. J Prosthet Dent 115(1):47–51. https://doi.org/10.1016/j.prosdent.2015.08.006

    Article  PubMed  Google Scholar 

  25. Molin M, Karlsson S (1993) The fit of gold inlays and three ceramic inlay systems. A clinical and in vitro study. Acta Odontol Scand 51:201–206

    Article  Google Scholar 

  26. Boening KW, Wolf BH, Schmidt AE, Kästner K, Walter MH (2000) Clinical fit of Procera all-ceramic crowns. J Prosthet Dent 84:419–124

    Article  Google Scholar 

  27. Güth JF, Kauling AEC, Schweiger J, Kühnisch J, Stimmelmayr M (2017) Virtual simulation of periodontal surgery including presurgical CAD/CAM fabrication of tooth-colored removable splints on the basis of CBCT data: a case report. Int J Periodontics Restorative Dent 37(6):e310–e320. https://doi.org/10.11607/prd.2769

    Article  PubMed  Google Scholar 

  28. Hwang HS, Choe SY, Hwang JS, Moon DN, Hou Y, Lee WJ, Wilkinson C (2015) Reproducibility of facial soft tissue thickness measurements using cone-beam CT images according to the measurement methods. J Forensic Sci 60(4):957–965. https://doi.org/10.1111/1556-4029.

    Article  PubMed  Google Scholar 

  29. Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS (2015) Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol 44(1):20140224. https://doi.org/10.1259/dmfr.20140224

    Article  PubMed  Google Scholar 

  30. Pauwels R, Beinsberger J, Stamatakis H, Tsiklakis K, Walker A, Bosmans H, Bogaerts R, Jacobs R, Horner K (2012) Comparison of spatial and contrast resolution for cone-beam computed tomography scanners. Oral Surg Oral Med Oral Pathol Oral Radiol 114(1):127–135

    Article  Google Scholar 

  31. Brüllmann D, Schulze RK (2015) Spatial resolution in CBCT machines for dental/maxillofacial applications-what do we know today? Dentomaxillofac Radiol 44(1):20140204. https://doi.org/10.1259/dmfr.20140204

    Article  PubMed  Google Scholar 

  32. Flügge T, Derksen W, Te Poel J, Hassan B, Nelson K, Wismeijer D (2017) Registration of cone beam computed tomography data and intraoral surface scans—a prerequisite for guided implant surgery with CAD/CAM drilling guides. Clin Oral Implants Res 28(9):1113–1118. https://doi.org/10.1111/clr.12925

    Article  PubMed  Google Scholar 

  33. Boldt J, Rottner K, Schmitter M, Hopfgartner A, Jakob P, Richter EJ, Tymofiyeva O (2018) High-resolution MR imaging for dental impressions: a feasibility study. Clin Oral Investig 22:1209–1213. https://doi.org/10.1007/s00784-017-2204-1

    Article  PubMed  Google Scholar 

  34. Huotilainen E, Jaanimets R, Valášek J, Marcián P, Salmi M, Tuomi J, Mäkitie A, Wolff J (2014) Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL conversion process. J Craniomaxillofac Surg 42(5):e259–e265. https://doi.org/10.1016/j.jcms.2013.10.001

    Article  PubMed  Google Scholar 

  35. Lee CH, Ryu JH, Lee YH, Yoon KH (2015) Reduction of radiation exposure by lead curtain shielding in dedicated extremity cone beam CT. Br J Radiol 88(1050):20140866. https://doi.org/10.1259/bjr.20140866

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kang SR, Lee WJ, Woo SY, Kim DS, Yi WJ (2014) Radiation dose reduction in CBCT imaging using K-edge filtering and energy weighting. Conf Proc IEEE Eng Med Biol Soc 2014:5137–5140. https://doi.org/10.1109/EMBC.2014.6944781

    Article  PubMed  Google Scholar 

  37. Flügge T, Hövener JB, Ludwig U, Eisenbeiss AK, Spittau B, Hennig J, Schmelzeisen R, Nelson K (2016) Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences. Eur Radiol 26:4616–4623

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CARESTREAM for the support of the study.

Funding

The first author was financial supported by the Brazilian National Council for Scientific and Technological Development (grant, no. 290087/2014–7). This study was financially supported by CARESTREAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Frederik Güth.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study, formal consent is not required.

Informed consent

For this type of study formal, consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kauling, A.E.C., Keul, C., Erdelt, K. et al. Can lithium disilicate ceramic crowns be fabricated on the basis of CBCT data?. Clin Oral Invest 23, 3739–3748 (2019). https://doi.org/10.1007/s00784-019-02802-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-019-02802-6

Keywords

Navigation