Skip to main content

Advertisement

Log in

Gene expression of miRNA-138 and cyclin D1 in oral lichen planus

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study aimed to evaluate microRNA-138 (miR-138) gene expression and its target cyclin D1 (CCND1) gene and protein expression in oral lichen planus (OLP) mucosa in an attempt to investigate their possible roles in OLP immunopathogenesis.

Methods

Sixty oral biopsy specimens were harvested from 30 healthy subjects and 30 OLP patients, subdivided into reticular, atrophic, and erosive groups (n = 10 each). Samples were subjected to quantitative real-time polymerase chain reaction analysis for quantification of miR-138 and CCND1 relative gene expression and immunohistochemical analysis to determine CCND1 protein expression.

Results

Samples from OLP patients had a significant underexpression of miR-138 gene and overexpression of CCND1 at both gene and protein levels compared to normal mucosa samples. The lowest levels of miR-138 expression were observed in atrophic and erosive OLP compared to reticular OLP, and the highest levels of CCND1 gene and protein expression were in atrophic OLP. An inverse correlation was demonstrated between the miR-138 expression and both CCND1 gene and protein expression in OLP patients. A significant positive correlation between CCND1 gene and protein expression was also observed.

Conclusion

Downregulation of miR-138 increases the gene and protein expression of its potential target CCND1 in OLP mucosa which might have a pivotal role in the disease pathogenesis.

Clinical relevance

This research implied that miR-138 may have a role in identification of symptomatic OLP lesions. MiR-138 might be considered as a potential tool in future OLP molecular therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roopashree MR, Gondhalekar RV, Shashikanth MC, George J, Thippeswamy SH, Shukla A (2010) Pathogenesis of oral lichen planus—a review. J Oral Pathol Med. 39(10):729–734. doi:10.1111/j.1600-0714.2010.00946.x

    Article  PubMed  Google Scholar 

  2. Kurago ZB (2016) Etiology and pathogenesis of oral lichen planus: an overview. Oral Surg Oral Med Oral Pathol Oral Radiol 122(1):72–80. doi:10.1016/j.oooo.2016.03.011

    Article  PubMed  Google Scholar 

  3. Sugerman PB, Savage NW, Walsh LJ, Zhao ZZ, Zhou XJ, Khan A et al (2002) The pathogenesis of oral lichen planus. Crit Rev Oral Biol Med 13(4):350–365

    Article  PubMed  Google Scholar 

  4. Lavanya N, Jayanthi P, Rao UK, Ranganathan K (2011) Oral lichen planus: an update on pathogenesis and treatment. J Oral Maxillofac Pathol 15(2):127–132. doi:10.4103/0973-029x.84474

    Article  PubMed  PubMed Central  Google Scholar 

  5. Silverman S Jr (2000) Oral lichen planus: a potentially premalignant lesion. J Oral Maxillofac Surg 58(11):1286–1288. doi:10.1053/joms.2000.16630

    Article  PubMed  Google Scholar 

  6. Lodi G, Scully C, Carrozzo M, Griffiths M, Sugerman PB, Thongprasom K (2005) Current controversies in oral lichen planus: report of an international consensus meeting. Part 2. Clinical management and malignant transformation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 100(2):164–178. doi:10.1016/j.tripleo.2004.06.076

    Article  PubMed  Google Scholar 

  7. van der Waal I (2009) Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of management. Oral Oncol 45(4–5):317–323. doi:10.1016/j.oraloncology.2008.05.016

    Article  PubMed  Google Scholar 

  8. Zuo YL, Gong DP, Li BZ, Zhao J, Zhou LY, Shao FY et al (2015) The TF-miRNA coregulation network in oral lichen planus. Biomed Res Int 2015:731264. doi:10.1155/2015/731264

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gassling V, Hampe J, Acil Y, Braesen JH, Wiltfang J, Hasler R (2013) Disease-associated miRNA-mRNA networks in oral lichen planus. PLoS One 8(5):e63015. doi:10.1371/journal.pone.0063015

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  Google Scholar 

  11. Erson AE, Petty EM (2008) MicroRNAs in development and disease. Clin Genet 74(4):296–306. doi:10.1111/j.1399-0004.2008.01076.x

    Article  PubMed  Google Scholar 

  12. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766–770. doi:10.1038/ng1590

    Article  PubMed  Google Scholar 

  13. Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8(2):93–103. doi:10.1038/nrg1990

    Article  PubMed  Google Scholar 

  14. Anglicheau D, Muthukumar T, Suthanthiran M (2010) MicroRNAs: small RNAs with big effects. Transplantation 90(2):105–112. doi:10.1097/TP.0b013e3181e913c2

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dai R, Ahmed SA (2011) MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res 157(4):163–179. doi:10.1016/j.trsl.2011.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  16. Singh RP, Massachi I, Manickavel S, Singh S, Rao NP, Hasan S et al (2013) The role of miRNA in inflammation and autoimmunity. Autoimmun Rev 12(12):1160–1165. doi:10.1016/j.autrev.2013.07.003

    Article  PubMed  Google Scholar 

  17. Chang SS, Jiang WW, Smith I, Poeta LM, Begum S, Glazer C et al (2008) MicroRNA alterations in head and neck squamous cell carcinoma. Int J Cancer 123(12):2791–2797. doi:10.1002/ijc.23831

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen Z, Jin Y, Yu D, Wang A, Mahjabeen I, Wang C et al (2012) Down-regulation of the microRNA-99 family members in head and neck squamous cell carcinoma. Oral Oncol 48(8):686–691. doi:10.1016/j.oraloncology.2012.02.020

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang H, Zhang G, Wu Z, Lu B, Yuan D, Li X et al (2015) MicoRNA-451 is a novel tumor suppressor via targeting c-myc in head and neck squamous cell carcinomas. J Cancer Res Ther 11(Suppl 2):C216–C221. doi:10.4103/0973-1482.168189

    PubMed  Google Scholar 

  20. Li J, Lei H, Xu Y, Tao ZZ (2015) miR-512-5p suppresses tumor growth by targeting hTERT in telomerase positive head and neck squamous cell carcinoma in vitro and in vivo. PLoS One 10(8):e0135265. doi:10.1371/journal.pone.0135265

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yu X, Li Z (2016) MicroRNA expression and its implications for diagnosis and therapy of tongue squamous cell carcinoma. J Cell Mol Med 20(1):10–16. doi:10.1111/jcmm.12650

    Article  PubMed  Google Scholar 

  22. Cervigne NK, Reis PP, Machado J, Sadikovic B, Bradley G, Galloni NN et al (2009) Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet 18(24):4818–4829. doi:10.1093/hmg/ddp446

    Article  PubMed  Google Scholar 

  23. Clague J, Lippman SM, Yang H, Hildebrandt MA, Ye Y, Lee JJ et al (2010) Genetic variation in MicroRNA genes and risk of oral premalignant lesions. Mol Carcinog 49(2):183–189. doi:10.1002/mc.20588

    PubMed  PubMed Central  Google Scholar 

  24. Yang Y, Li YX, Yang X, Jiang L, Zhou ZJ, Zhu YQ (2013) Progress risk assessment of oral premalignant lesions with saliva miRNA analysis. BMC Cancer 13:129. doi:10.1186/1471-2407-13-129

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bueno MJ, Malumbres M (2011) MicroRNAs and the cell cycle. Biochim Biophys Acta 1812(5):592–601. doi:10.1016/j.bbadis.2011.02.002

    Article  PubMed  Google Scholar 

  26. Jiang L, Liu X, Kolokythas A, Yu J, Wang A, Heidbreder CE et al (2010) Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. Int J Cancer 127(3):505–512. doi:10.1002/ijc.25320

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang W, Zhao LJ, Tan YX, Ren H, Qi ZT (2012) MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis 33(5):1113–1120. doi:10.1093/carcin/bgs113

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jiang L, Dai Y, Liu X, Wang C, Wang A, Chen Z et al (2011) Identification and experimental validation of G protein alpha inhibiting activity polypeptide 2 (GNAI2) as a microRNA-138 target in tongue squamous cell carcinoma. Hum Genet 129(2):189–197. doi:10.1007/s00439-010-0915-3

    Article  PubMed  Google Scholar 

  29. Liu X, Jiang L, Wang A, Yu J, Shi F, Zhou X (2009) MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett 286(2):217–222. doi:10.1016/j.canlet.2009.05.030

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jin Y, Wang C, Liu X, Mu W, Chen Z, Yu D et al (2011) Molecular characterization of the microRNA-138-Fos-like antigen 1 (FOSL1) regulatory module in squamous cell carcinoma. J Biol Chem 286(46):40104–40109. doi:10.1074/jbc.C111.296707

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu X, Wang C, Chen Z, Jin Y, Wang Y, Kolokythas A et al (2011) MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma cell lines. Biochem J 440(1):23–31. doi:10.1042/bj20111006

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jin Y, Chen D, Cabay RJ, Wang A, Crowe DL, Zhou X (2013) Role of microRNA-138 as a potential tumor suppressor in head and neck squamous cell carcinoma. Int Rev Cell Mol Biol 303:357–385. doi:10.1016/b978-0-12-407697-6.00009-x

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu X, Lv XB, Wang XP, Sang Y, Xu S, Hu K et al (2012) MiR-138 suppressed nasopharyngeal carcinoma growth and tumorigenesis by targeting the CCND1 oncogene. Cell Cycle 11(13):2495–2506. doi:10.4161/cc.20898

    Article  PubMed  Google Scholar 

  34. Grillo M, Bott MJ, Khandke N, McGinnis JP, Miranda M, Meyyappan M et al (2006) Validation of cyclin D1/CDK4 as an anticancer drug target in MCF-7 breast cancer cells: effect of regulated overexpression of cyclin D1 and siRNA-mediated inhibition of endogenous cyclin D1 and CDK4 expression. Breast Cancer Res Treat 95(2):185–194. doi:10.1007/s10549-005-9066-y

    Article  PubMed  Google Scholar 

  35. Koontongkaew S, Chareonkitkajorn L, Chanvitan A, Leelakriangsak M, Amornphimoltham P (2000) Alterations of p53, pRb, cyclin D(1) and cdk4 in human oral and pharyngeal squamous cell carcinomas. Oral Oncol 36(4):334–339

    Article  PubMed  Google Scholar 

  36. Yao X, Yin C, Shen LJ, Xie SM (2007) Expressions of NF--kappaBp65, TRAF2, cyclinD1 and their association with cell apoptosis in oral lichen planus. Nan Fang Yi Ke Da Xue Xue Bao 27(11):1657–1660

    PubMed  Google Scholar 

  37. Zhang Z, Chen L, Hong Q, Sun S (2010) Expression of TGF-β1, Smad 4 and cyclin D1 in oral lichen planus. Chinese J Conser Dent 11

  38. Abid AM, Merza MS (2014) Immunohistochemical expression of cyclin D1 and NF-KB p65 in oral lichen planus and oral squamous cell carcinoma (comparative study). J Bagh College Dentistry 26(1):80–87

    Article  Google Scholar 

  39. van Oijen MG, Tilanus MG, Medema RH, Slootweg PJ (1998) Expression of p21 (Waf1/Cip1) in head and neck cancer in relation to proliferation, differentiation, p53 status and cyclin D1 expression. J Oral Pathol Med. 27(8):367–375

    Article  PubMed  Google Scholar 

  40. Chen Q, Luo G, Li B, Samaranayake LP (1999) Expression of p16 and CDK4 in oral premalignant lesions and oral squamous cell carcinomas: a semi-quantitative immunohistochemical study. J Oral Pathol Med. 28(4):158–164

    Article  PubMed  Google Scholar 

  41. Poomsawat S, Buajeeb W, Khovidhunkit SO, Punyasingh J (2010) Alteration in the expression of cdk4 and cdk6 proteins in oral cancer and premalignant lesions. J Oral Pathol Med. 39(10):793–799. doi:10.1111/j.1600-0714.2010.00909.x

    Article  PubMed  Google Scholar 

  42. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205. doi:10.1146/annurev.cellbio.23.090506.123406

    Article  PubMed  Google Scholar 

  43. van der Meij EH, Mast H, van der Waal I (2007) The possible premalignant character of oral lichen planus and oral lichenoid lesions: a prospective five-year follow-up study of 192 patients. Oral Oncol 43(8):742–748. doi:10.1016/j.oraloncology.2006.09.006

    Article  PubMed  Google Scholar 

  44. Fitzpatrick SG, Hirsch SA, Gordon SC (2014) The malignant transformation of oral lichen planus and oral lichenoid lesions: a systematic review. J Am Dent Assoc 145(1):45–56. doi:10.14219/jada.2013.10

    Article  PubMed  Google Scholar 

  45. Abramson JH (1966) The Cornell Medical Index as an epidemiological tool. Am J Public Health Nations Health 56(2):287–298

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rad M, Hashemipoor MA, Mojtahedi A, Zarei MR, Chamani G, Kakoei S et al (2009) Correlation between clinical and histopathologic diagnoses of oral lichen planus based on modified WHO diagnostic criteria. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107(6):796–800. doi:10.1016/j.tripleo.2009.02.020

    Article  PubMed  Google Scholar 

  47. Hirota M, Ito T, Okudela K, Kawabe R, Yazawa T, Hayashi H et al (2002) Cell proliferation activity and the expression of cell cycle regulatory proteins in oral lichen planus. J Oral Pathol Med. 31(4):204–212

    Article  PubMed  Google Scholar 

  48. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  PubMed  Google Scholar 

  49. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191

    Article  PubMed  Google Scholar 

  50. Arao TC, Guimaraes AL, de Paula AM, Gomes CC, Gomez RS (2012) Increased miRNA-146a and miRNA-155 expressions in oral lichen planus. Arch Dermatol Res 304(5):371–375. doi:10.1007/s00403-011-1197-x

    Article  PubMed  Google Scholar 

  51. da Silva Fonseca LM, do Carmo MA (2001) Identification of the AgNORs, PCNA and ck16 proteins in oral lichen planus lesions. Oral Dis 7(6):344–348

    Article  PubMed  Google Scholar 

  52. Rezaee M, Tadbir AA, Akbari B (2013) CDK6 expression in oral lichen planus. Middle-East J Sci Res 16(10):1297–1302. doi:10.5829/idosi.mejsr.2013.16.10.7647

    Google Scholar 

  53. Gonzalez-Moles MA, Bascones-Ilundain C, Gil Montoya JA, Ruiz-Avila I, Delgado-Rodriguez M, Bascones-Martinez A (2006) Cell cycle regulating mechanisms in oral lichen planus: molecular bases in epithelium predisposed to malignant transformation. Arch Oral Biol 51(12):1093–1103. doi:10.1016/j.archoralbio.2006.06.007

    Article  PubMed  Google Scholar 

  54. Zhang WY, Liu W, Zhou YM, Shen XM, Wang YF, Tang GY (2012) Altered microRNA expression profile with miR-27b down-regulation correlated with disease activity of oral lichen planus. Oral Dis 18(3):265–270. doi:10.1111/j.1601-0825.2011.01869.x

    Article  PubMed  Google Scholar 

  55. Danielsson K, Ebrahimi M, Wahlin YB, Nylander K, Boldrup L (2012a) Increased levels of COX-2 in oral lichen planus supports an autoimmune cause of the disease. J Eur Acad Dermatol Venereol 26(11):1415–1419. doi:10.1111/j.1468-3083.2011.04306.x

    Article  PubMed  Google Scholar 

  56. Danielsson K, Wahlin YB, Gu X, Boldrup L, Nylander K (2012b) Altered expression of miR-21, miR-125b, and miR-203 indicates a role for these microRNAs in oral lichen planus. J Oral Pathol Med. 41(1):90–95. doi:10.1111/j.1600-0714.2011.01084.x

    Article  PubMed  Google Scholar 

  57. Hu JY, Zhang J, Cui JL, Liang XY, Lu R, Du GF et al (2013) Increasing CCL5/CCR5 on CD4+ T cells in peripheral blood of oral lichen planus. Cytokine 62(1):141–145. doi:10.1016/j.cyto.2013.01.020

    Article  PubMed  Google Scholar 

  58. Shen Z, Du G, Zhou Z, Liu W, Shi L, Xu H (2015) Aberrant expression of interleukin-22 and its targeting microRNAs in oral lichen planus: a preliminary study. J Oral Pathol Med. doi:10.1111/jop.12404

    Google Scholar 

  59. Fu D, Yu W, Li M, Wang H, Liu D, Song X et al (2015) MicroRNA-138 regulates the balance of Th1/Th2 via targeting RUNX3 in psoriasis. Immunol Lett 166(1):55–62. doi:10.1016/j.imlet.2015.05.014

    Article  PubMed  Google Scholar 

  60. Zhou X, Luan X, Chen Z, Francis M, Gopinathan G, Li W et al (2016) MicroRNA-138 inhibits periodontal progenitor differentiation under inflammatory conditions. J Dent Res 95(2):230–237. doi:10.1177/0022034515613043

    Article  PubMed  PubMed Central  Google Scholar 

  61. Karatsaidis A, Schreurs O, Helgeland K, Axell T, Schenck K (2003) Erythematous and reticular forms of oral lichen planus and oral lichenoid reactions differ in pathological features related to disease activity. J Oral Pathol Med 32(5):275–281

    Article  PubMed  Google Scholar 

  62. Yang JG, Sun YR, Chen GY, Liang XY, Zhang J, Zhou G (2016) Different expression of MicroRNA-146a in peripheral blood CD4(+) T cells and lesions of oral lichen planus. Inflammation 39(2):860–866. doi:10.1007/s10753-016-0316-4

    Article  PubMed  Google Scholar 

  63. Carlos de Vicente J, Herrero-Zapatero A, Fresno MF, Lopez-Arranz JS (2002) Expression of cyclin D1 and Ki-67 in squamous cell carcinoma of the oral cavity: clinicopathological and prognostic significance. Oral Oncol 38(3):301–308

    Article  PubMed  Google Scholar 

  64. Martin-Ezquerra G, Salgado R, Toll A, Gilaberte M, Baro T, Alameda Quitllet F et al (2010) Multiple genetic copy number alterations in oral squamous cell carcinoma: study of MYC, TP53, CCDN1, EGFR and ERBB2 status in primary and metastatic tumours. Br J Dermatol 163(5):1028–1035. doi:10.1111/j.1365-2133.2010.09947.x

    Article  PubMed  Google Scholar 

  65. Bascones C, Gonzalez-Moles MA, Esparza G, Bravo M, Acevedo A, Gil-Montoya JA et al (2005) Apoptosis and cell cycle arrest in oral lichen planus hypothesis on their possible influence on its malignant transformation. Arch Oral Biol 50(10):873–881. doi:10.1016/j.archoralbio.2005.02.005

    Article  PubMed  Google Scholar 

  66. Han LP, Fu T, Lin Y, Miao JL, Jiang QF (2016) MicroRNA-138 negatively regulates non-small cell lung cancer cells through the interaction with cyclin D3. Tumour Biol 37(1):291–298. doi:10.1007/s13277-015-3757-8

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noha A. Ghallab.

Ethics declarations

Conflict of interest

Dr. Noha Ghallab declares that she has no conflict of interest. Dr. Rehab Kasem declares that she has no conflict of interest. Dr. Safa Abd El-Ghani declares that she has no conflict of interest. Dr. Olfat Shaker declares that she has no conflict of interest.

Funding

The study was funded by personal resources to be refunded later by the Ministry of Higher Education, Cairo, Egypt on international publishing.

Ethical approval

This article was approved by the Faculty of Oral and Dental Medicine Research Ethics Committee, Cairo University in October 2014.

Informed consent

Following an explanation of the study as well as information about the sampling procedures, each subject signed a written informed consent form approved by the Faculty Research Ethics Committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghallab, N.A., Kasem, R.F., El-Ghani, S.F.A. et al. Gene expression of miRNA-138 and cyclin D1 in oral lichen planus. Clin Oral Invest 21, 2481–2491 (2017). https://doi.org/10.1007/s00784-017-2091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-017-2091-5

Keywords

Navigation