Skip to main content

Advertisement

Log in

Periapical lesions decrease Akt serine phosphorylation and plasma membrane GLUT4 content in rat skeletal muscle

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Periapical lesion (PL) promotes insulin resistance; however, the mechanisms underlying this alteration are not fully understood. Therefore, in this study, we aimed to evaluate the Akt serine phosphorylation status and GLUT4 expression levels in the gastrocnemius muscle (GM) of rats with PL.

Materials and methods

Male Wistar rats (n = 42) were distributed equally into control (CN) and PL groups. The pulpal tissue of the PL group rats was exposed to the oral environment for 30 days. Thereafter, glucose and insulin levels were assessed, followed by homeostasis model assessment of insulin resistance (HOMA-IR). The Akt serine phosphorylation and GLUT4 levels of microsomal (M) and plasma membrane (PM) fractions were evaluated by western blotting and analyzed statistically.

Results

Compared to CN group rats, PL group rats had lower insulin sensitivity (as observed by HOMA-IR), lower Akt serine phosphorylation status after insulin stimulus, and lower GLUT4 levels in the PM fraction. However, the M fraction in the PL group did not differ significantly from that of the CN group.

Conclusions

PL decreases insulin sensitivity, Akt phosphorylation, and PM GLUT4 content.

Clinical relevance

The present study indicates that preventing endodontic disease can thwart insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fouad AF, Acosta AW (2001) Periapical lesion progression and cytokine expression in an LPS hyporesponsive model. Int Endod J 34:506–513

    Article  PubMed  Google Scholar 

  2. Segura-Egea JJ, Castellanos-Cosano L, Machuca G et al (2012) Diabetes mellitus, periapical inflammation and endodontic treatment outcome. Med Oral Patol Oral Cir Bucal 17:e356–e361

    Article  PubMed  Google Scholar 

  3. Iwama A, Morimoto T, Tsuji M et al (2006) Increased number of anaerobic bacteria in the infected root canal in type diabetic rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101:681–686

    Article  PubMed  Google Scholar 

  4. Bender IB, Bender AB (2003) Diabetes mellitus and the dental pulp. J Endod 29:383–389

    Article  PubMed  Google Scholar 

  5. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14

    Article  PubMed  Google Scholar 

  6. Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106:473–481

    Article  PubMed  PubMed Central  Google Scholar 

  7. Esser N, Legrand-Poels S, Piette J et al (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 14:187–189

    Google Scholar 

  8. Colombo NH, Shirakashi DJ, Chiba FY et al (2012) Periodontal disease decreases insulin sensitivity and insulin signaling. J Periodontol 83:864–870

    Article  PubMed  Google Scholar 

  9. Astolphi RD, Curbete MM, Colombo NH et al (2013) Periapical lesions decrease insulin signal and cause insulin resistance. J Endod 39:648–652

    Article  PubMed  Google Scholar 

  10. Zhang J, Gao Z, Yin J et al (2008) S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-(alpha) signaling through IKK2. J Biol Chem 283:35375–353782

    Article  PubMed  PubMed Central  Google Scholar 

  11. Coelho M, Oliveira T, Fernandes R (2013) Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 9:191–200

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116:2308

    Article  Google Scholar 

  13. Garvey WT, Maianu L, Zhu JH et al (1998) Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest 101:2377–2386

    Article  PubMed  PubMed Central  Google Scholar 

  14. Thirone AC, Huang C, Klip A (2006) Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends Endocrinol Metab 17:72–78

    Article  PubMed  Google Scholar 

  15. Thong FS, Dugani CB, Klip A (2005) Turning signals on and off: GLUT4 traffic in the insulin-signaling highway. Physiology (Bethesda) 20:271–284

    Article  Google Scholar 

  16. Bonora E, Targher G, Alberiche M et al (2000) Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care 23:57–63

    Article  PubMed  Google Scholar 

  17. Carvalho CR, Brenelli SL, Silva AC et al (1996) Effect of aging on insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of rats. Endocrinology 137:151–159

    PubMed  Google Scholar 

  18. Mitsumoto Y, Klip A (1992) Developmental regulation of the subcellular distribution and glycosylation of GLUT1 and GLUT4 glucose transporters during myogenesis of L6 muscle cells. J Biol Chem 267:4957–4962

    PubMed  Google Scholar 

  19. Bain JL, Lester SR, Henry WD et al (2009) Effects of induced periapical abscesses on rat pregnancy outcomes. Arch Oral Biol 54:162–171

    Article  PubMed  Google Scholar 

  20. Watanabe K, Iizuka T, Adeleke A et al (2011) Involvement of toll like receptor 4 in alveolar bone loss and glucose homeostasis in experimental periodontitis. J Periodontal Res 46:21–30

    Article  PubMed  Google Scholar 

  21. Kristensen JM, Treebak JT, Schjerling P et al (2014) Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle. Am J Physiol Endocrinol Metab 306:1099–1109

    Article  Google Scholar 

  22. Melo AM, Benatti RO, Ignacio-Souza LM et al (2014) Hypothalamic endoplasmic reticulum stress and insulin resistance in offspring of mice dams fed high-fat diet during pregnancy and lactation. Metabolism 63:682–692

    Article  PubMed  Google Scholar 

  23. Fan N, Sun H, Wang Y et al (2014) Midkine, a potential link between obesity and insulin resistance. PLoS One 9:e88299

    Article  PubMed  PubMed Central  Google Scholar 

  24. Seyoum B, Fite A, Abou-Samra AB (2011) Effects of 3T3 adipocytes on interleukin-6 expression and insulin signaling in L6 skeletal muscle cells. Biochem Biophys Res Commun 410:13–18

    Article  PubMed  Google Scholar 

  25. Bergenholtz G (1977) Effect of bacterial products on inflammatory reactions in the dental pulp. Scand J Dent Res 85:122–129

    PubMed  Google Scholar 

  26. Marton IJ, Kiss C (1993) Characterization of inflammatory cell infiltrate in dental periapical lesions. Int Endod J 26:131–136

    Article  PubMed  Google Scholar 

  27. Metzger Z (2000) Macrophages in periapical lesions. Endod Dent Traumatol 16:1–8

    Article  PubMed  Google Scholar 

  28. Napetschnig J, Wu H (2013) Molecular basis of NF-κB signaling. Annu Rev Biophys 42:443–468

    Article  PubMed  PubMed Central  Google Scholar 

  29. Feinstein R, Kanety H, Papall MZ et al (1993) Tumor necrosis factor-a suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J Biol Chem 268:26055–26058

    PubMed  Google Scholar 

  30. Kong P, Chi R, Zhang L et al (2014) Effects of paeoniflorin on tumor necrosis factor-α-induced insulin resistance and changes of adipokines in 3T3-L1 adipocytes. Fitoterapia 91:44–50

    Article  Google Scholar 

  31. Márton I, Kiss C, Balla G et al (1988) Acute phase proteins in patients with chronic periapical granuloma before and after surgical treatment. Oral Microbiol Immunol 3:95–96

    Article  PubMed  Google Scholar 

  32. Márton IJ, Kiss C (2000) Protective and destructive immune reactions in apical periodontitis. Oral Microbiol Immunol 15:139–150

    Article  PubMed  Google Scholar 

  33. Ren YF, Malmstrom HS (2007) Rapid quantitative determination of C-reactive protein at chair side in dental emergency patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:49–55

    Article  PubMed  Google Scholar 

  34. Kettering JD, Torabinejad M (1984) Cytotoxicity of root canal sealers: a study using HeLa cells and fibroblasts. Int Endod J 17:60–66

    Article  PubMed  Google Scholar 

  35. Whiteman EL, Cho H, Birnbaum MJ (2002) Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 13:444–451

    Article  PubMed  Google Scholar 

  36. Leto D, Saltiel AR (2012) Regulation of glucose transport by insulin: traffic control of GLUT4. Nat Rev Mol Cell Biol 13:383–396

    Article  PubMed  Google Scholar 

  37. Garvey WT, Maianu L, Huecksteadt TP et al (1991) Pre-translation suppression of a glucose transporter protein causes insulin resistance in adipocytes from patients with non-insulin-dependent diabetes mellitus and obesity. J Clin Invest 87:1072–1081

    Article  PubMed  PubMed Central  Google Scholar 

  38. Leguisamo NM, Lehnen AM, Machado UF et al (2012) GLUT4 content decreases along with insulin resistance and high levels of inflammatory markers in rats with metabolic syndrome. Cardiovasc Diabetol 11:100

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant (2013/14924-0) from the São Paulo Research Foundation (FAPESP), São Paulo, SP, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Hissako Sumida.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, R.F., de Oliveira da Mota, M.S., de Lima Coutinho Mattera, M.S. et al. Periapical lesions decrease Akt serine phosphorylation and plasma membrane GLUT4 content in rat skeletal muscle. Clin Oral Invest 20, 1625–1630 (2016). https://doi.org/10.1007/s00784-015-1664-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1664-4

Keywords

Navigation