Skip to main content

Advertisement

Log in

Microbial adhesion on novel yttria-stabilized tetragonal zirconia (Y-TZP) implant surfaces with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coatings

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Biomaterial surfaces are at high risk for initial microbial colonization, persistence, and concomitant infection. The rationale of this study was to assess the initial adhesion on novel implant surfaces of Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans upon incubation.

Materials and methods

The tested samples were 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) samples with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coating (A) and 3Y-TZP samples coated with ceria-stabilized zirconia-based (Ce-TZP) composite and a-C:H:N (B). Uncoated 3Y-TZP samples (C) and bovine enamel slabs (BES) served as controls. Once the surface was characterized, the adherent microorganisms were quantified by estimating the colony-forming units (CFUs). Microbial vitality was assessed by live/dead staining, and microbial-biomaterial surface topography was visualized by scanning electron microscopy (SEM).

Results

Overall, A and B presented the lowest CFU values for all microorganisms, while C sheltered significantly less E. faecalis, P. aeruginosa, and C. albicans than BES. Compared to the controls, B demonstrated the lowest vitality values for E. coli (54.12 %) and C. albicans (67.99 %). Interestingly, A (29.24 %) exhibited higher eradication rates for S. aureus than B (13.95 %).

Conclusions

Within the limitations of this study, a-C:H:N-coated 3Y-TZP surfaces tended to harbor less initially adherent microorganisms and selectively interfered with their vitality.

Clinical relevance

This could enable further investigation of the new multi-functional zirconia surfaces to confirm their favorable antimicrobial properties in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wenz HJ, Bartsch J, Wolfart S, Kern M (2008) Osseointegration and clinical success of zirconia dental implants: a systematic review. Int J Prosthodont 21(1):27–36

    PubMed  Google Scholar 

  2. Kohal RJ, Patzelt SB, Butz F, Sahlin H (2013) One-piece zirconia oral implants: one-year results from a prospective case series. 2. Three-unit fixed dental prosthesis (FDP) reconstruction. J Clin Periodontol 40(5):553–562. doi:10.1111/jcpe.12093

    Article  PubMed  Google Scholar 

  3. Bellucci D, Sola A, Cannillo V (2014) Bioactive glass/ZrO2 composites for orthopaedic applications. Biomed Mater 9(1):015005. doi:10.1088/1748-6041/9/1/015005

    Article  PubMed  Google Scholar 

  4. Roy ME, Whiteside LA, Katerberg BJ, Steiger JA (2007) Phase transformation, roughness, and microhardness of artificially aged yttria- and magnesia-stabilized zirconia femoral heads. J Biomed Mater Res A 83(4):1096–1102. doi:10.1002/jbm.a.31438

    Article  PubMed  Google Scholar 

  5. Kohal RJ, Klaus G, Strub JR (2006) Zirconia-implant-supported all-ceramic crowns withstand long-term load: a pilot investigation. Clin Oral Implants Res 17(5):565–571. doi:10.1111/j.1600-0501.2006.01252.x

    Article  PubMed  Google Scholar 

  6. Camposilvan E, Marro FG, Mestra A, Anglada M (2015) Enhanced reliability of yttria-stabilized zirconia for dental applications. Acta Biomater 17:36–46. doi:10.1016/j.actbio.2015.01.023

    Article  PubMed  Google Scholar 

  7. Cotes C, Arata A, Melo RM, Bottino MA, Machado JP, Souza RO (2014) Effects of aging procedures on the topographic surface, structural stability, and mechanical strength of a ZrO-based dental ceramic. Dent Mater. doi:10.1016/j.dental.2014.08.380

  8. Benzaid R, Chevalier J, Saadaoui M, Fantozzi G, Nawa M, Diaz LA, Torrecillas R (2008) Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia-alumina nanocomposite for medical applications. Biomaterials 29(27):3636–3641. doi:10.1016/j.biomaterials.2008.05.021

    Article  PubMed  Google Scholar 

  9. Chevalier J (2006) What future for zirconia as a biomaterial? Biomaterials 27(4):535–543. doi:10.1016/j.biomaterials.2005.07.034

    Article  PubMed  Google Scholar 

  10. Chevalier J, Deville S, Munch E, Jullian R, Lair F (2004) Critical effect of cubic phase on aging in 3mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials 25(24):5539–5545. doi:10.1016/j.biomaterials.2004.01.002

    Article  PubMed  Google Scholar 

  11. Hallmann L, Mehl A, Ulmer P, Reusser E, Stadler J, Zenobi R, Stawarczyk B, Ozcan M, Hammerle CH (2012) The influence of grain size on low-temperature degradation of dental zirconia. J Biomed Mater Res B Appl Biomater 100(2):447–456. doi:10.1002/jbm.b.31969

    Article  PubMed  Google Scholar 

  12. Sanon C, Chevalier J, Douillard T, Kohal RJ, Coelho PG, Hjerppe J, Silva NR (2013) Low temperature degradation and reliability of one-piece ceramic oral implants with a porous surface. Dent Mater 29(4):389–397. doi:10.1016/j.dental.2013.01.007

    Article  PubMed  Google Scholar 

  13. Riool M, de Boer L, Jaspers V, van der Loos CM, van Wamel WJ, Wu G, Kwakman PH, Zaat SA (2014) Staphylococcus epidermidis originating from titanium implants infects surrounding tissue and immune cells. Acta Biomater. doi:10.1016/j.actbio.2014.08.012

  14. Madianos PN, Bobetsis YA, Kinane DF (2005) Generation of inflammatory stimuli: how bacteria set up inflammatory responses in the gingiva. J Clin Periodontol 32(Suppl 6):57–71. doi:10.1111/j.1600-051X.2005.00821.x

    Article  PubMed  Google Scholar 

  15. Lindhe J, Meyle J (2008) Peri-implant diseases: consensus report of the sixth european workshop on periodontology. J Clin Periodontol 35(8 Suppl):282–285. doi:10.1111/j.1600-051X.2008.01283.x

    Article  PubMed  Google Scholar 

  16. Charalampakis G, Leonhardt A, Rabe P, Dahlen G (2012) Clinical and microbiological characteristics of peri-implantitis cases: a retrospective multicentre study. Clin Oral Implants Res 23(9):1045–1054. doi:10.1111/j.1600-0501.2011.02258.x

    Article  PubMed  Google Scholar 

  17. Smeets R, Henningsen A, Jung O, Heiland M, Hammacher C, Stein JM (2014) Definition, etiology, prevention and treatment of peri-implantitis—a review. Head Face Med 10:34. doi:10.1186/1746-160x-10-34

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhuang LF, Watt RM, Mattheos N, Si MS, Lai HC, Lang NP (2014) Periodontal and peri-implant microbiota in patients with healthy and inflamed periodontal and peri-implant tissues. Clin Oral Implants Res. doi:10.1111/clr.12508

  19. Rams TE, Degener JE, van Winkelhoff AJ (2014) Antibiotic resistance in human peri-implantitis microbiota. Clin Oral Implants Res 25(1):82–90. doi:10.1111/clr.12160

    Article  PubMed  Google Scholar 

  20. Bremer F, Grade S, Kohorst P, Stiesch M (2011) In vivo biofilm formation on different dental ceramics. Quintessence Int 42(7):565–574

    PubMed  Google Scholar 

  21. Karygianni LJA, Schienle S, Bernsmann F, Adolfsson E, Kohal RJ, Chevalier J, Hellwig E, Al-Ahmad A (2013) Initial bacterial adhesion on different yttria-stabilized tetragonal zirconia implant surfaces in vitro. Mater 6:5659–5674

    Article  Google Scholar 

  22. Socransky SS, Haffajee AD (2000) Dental biofilms: difficult therapeutic targets. Periodontol 28:12–55

    Article  Google Scholar 

  23. Katsikogianni M, Missirlis YF (2004) Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater 8:37–57

    PubMed  Google Scholar 

  24. Roy RK, Lee KR (2007) Biomedical applications of diamond-like carbon coatings: a review. J Biomed Mater Res B Appl Biomater 83(1):72–84. doi:10.1002/jbm.b.30768

    Article  PubMed  Google Scholar 

  25. Dorner-Reisel A, Gartner G, Reisel G, Irmer G (2008) Diamond-like carbon films for polyethylene femoral parts: Raman and FT-IR spectroscopy before and after incubation in simulated body liquid. Anal Bioanal Chem 390(6):1487–1493. doi:10.1007/s00216-007-1744-7

    Article  PubMed  Google Scholar 

  26. Lappalainen R, Heinonen H, Anttila A, Santavirta S (1998) Some relevant issues related to the use of amorphous diamond coatings for medical applications. Diamond Relat Mater 7:482–485

    Article  Google Scholar 

  27. Almaguer-Flores A, Ximenez-Fyvie LA, Rodil SE (2010) Oral bacterial adhesion on amorphous carbon and titanium films: effect of surface roughness and culture media. J Biomed Mater Res B Appl Biomater 92(1):196–204. doi:10.1002/jbm.b.31506

    Article  PubMed  Google Scholar 

  28. Hauert R, Glisenti A, Metin S, Goitia J, Kaufman JH, van Loosdrecht PHM, Kellock AJ, Hoffmann P, White RL, Hermsmeier BD (1995) Influence of nitrogen doping on different properties of a-C:H. Thin Solid Films 268:22–29. doi:10.1016/0040-6090(95)06824-4

    Article  Google Scholar 

  29. Tripathi RK, Panwar OS, Srivastava AK, Rawal I, Chockalingam S (2014) Structural, nanomechanical, field emission and ammonia gas sensing properties of nitrogenated amorphous carbon films deposited by filtered anodic jet carbon arc technique. Talanta 125:276–283. doi:10.1016/j.talanta.2014.03.005

    Article  PubMed  Google Scholar 

  30. Palmero P, Kern F, Sommer F, Lombardi M, Gadow R, Montanaro L (2014) Issues in nanocomposite ceramic engineering: focus on processing and properties of alumina-based composites. J Appl Biomater Funct Mater 12(3):e113–128. doi:10.5301/jabfm.5000185

    Google Scholar 

  31. Tawakoli PN, Al-Ahmad A, Hoth-Hannig W, Hannig M, Hannig C (2013) Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clin Oral Investig 17(3):841–850. doi:10.1007/s00784-012-0792-3

    Article  PubMed  Google Scholar 

  32. Busscher HJ, Rinastiti M, Siswomihardjo W, van der Mei HC (2010) Biofilm formation on dental restorative and implant materials. J Dent Res 89(7):657–665. doi:10.1177/0022034510368644

    Article  PubMed  Google Scholar 

  33. Al-Radha AS, Dymock D, Younes C, O’Sullivan D (2012) Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion. J Dent 40(2):146–153. doi:10.1016/j.jdent.2011.12.006

    Article  PubMed  Google Scholar 

  34. de Oliveira GR, Pozzer L, Cavalieri-Pereira L, de Moraes PH, Olate S, de Albergaria Barbosa JR (2012) Bacterial adhesion and colonization differences between zirconia and titanium implant abutments: an in vivo human study. J Periodontal Implant Sci 42(6):217–223. doi:10.5051/jpis.2012.42.6.217

    Article  PubMed  PubMed Central  Google Scholar 

  35. Al-Ahmad A, Wiedmann-Al-Ahmad M, Fackler A, Follo M, Hellwig E, Bachle M, Hannig C, Han JS, Wolkewitz M, Kohal R (2013) In vivo study of the initial bacterial adhesion on different implant materials. Arch Oral Biol 58(9):1139–1147. doi:10.1016/j.archoralbio.2013.04.011

    Article  PubMed  Google Scholar 

  36. Nascimento C, Pita MS, Fernandes FH, Pedrazzi V, de Albuquerque Junior RF, Ribeiro RF (2014) Bacterial adhesion on the titanium and zirconia abutment surfaces. Clin Oral Implants Res 25(3):337–343. doi:10.1111/clr.12093

    Article  PubMed  Google Scholar 

  37. Al-Ahmad A, Wiedmann-Al-Ahmad M, Carvalho C, Lang M, Follo M, Braun G, Wittmer A, Mulhaupt R, Hellwig E (2008) Bacterial and Candida albicans adhesion on rapid prototyping-produced 3D-scaffolds manufactured as bone replacement materials. J Biomed Mater Res A 87(4):933–943. doi:10.1002/jbm.a.31832

    Article  PubMed  Google Scholar 

  38. Hannig C, Hannig M, Rehmer O, Braun G, Hellwig E, Al-Ahmad A (2007) Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch Oral Biol 52(11):1048–1056. doi:10.1016/j.archoralbio.2007.05.006

    Article  PubMed  Google Scholar 

  39. Karygianni L, Follo M, Hellwig E, Burghardt D, Wolkewitz M, Anderson A, Al-Ahmad A (2012) Microscope-based imaging platform for large-scale analysis of oral biofilms. Appl Environ Microbiol 78(24):8703–8711. doi:10.1128/aem.02416-12

    Article  PubMed  PubMed Central  Google Scholar 

  40. Teles FR, Teles RP, Sachdeo A, Uzel NG, Song XQ, Torresyap G, Singh M, Papas A, Haffajee AD, Socransky SS (2012) Comparison of microbial changes in early redeveloping biofilms on natural teeth and dentures. J Periodontol 83(9):1139–1148. doi:10.1902/jop.2012.110506

    Article  PubMed  PubMed Central  Google Scholar 

  41. Del Carpio-Perochena A, Kishen A, Shrestha A, Bramante CM (2015) Antibacterial properties associated with chitosan nanoparticle treatment on root dentin and 2 types of endodontic sealers. J Endod 41(8):1353–1358. doi:10.1016/j.joen.2015.03.020

    Article  PubMed  Google Scholar 

  42. Avila ED, Molon RS, Lima B, Lux R, Shi W, Jafelicci Junior M, Spolidorio D, Vergani CE, Mollo Junior F (2015) The impact of physical chemical characteristics of implant abutment surfaces on bacteria adhesion. J Oral Implantol. doi:10.1563/aaid-joi-D-14-00318

  43. Aguayo S, Donos N, Spratt D, Bozec L (2015) Nanoadhesion of Staphylococcus aureus onto titanium implant surfaces. J Dent Res 94(8):1078–1084. doi:10.1177/0022034515591485

    Article  PubMed  Google Scholar 

  44. Davidson H, Poon M, Saunders R, Shapiro IM, Hickok NJ, Adams CS (2014) Tetracycline tethered to titanium inhibits colonization by gram-negative bacteria. J Biomed Mater Res B Appl Biomater. doi:10.1002/jbm.b.33310

  45. Wood SR, Kirkham J, Marsh PD, Shore RC, Nattress B, Robinson C (2000) Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res 79(1):21–27

    Article  PubMed  Google Scholar 

  46. Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova EP (2012) Surface topographical factors influencing bacterial attachment. Adv Colloid Interface Sci 179–182:142–149. doi:10.1016/j.cis.2012.06.015

    Article  PubMed  Google Scholar 

  47. Gustumhaugen E, Lonn-Stensrud J, Scheie AA, Lyngstadaas SP, Ekfeldt A, Taxt-Lamolle S (2014) Effect of chemical and mechanical debridement techniques on bacterial re-growth on rough titanium surfaces: an in vitro study. Clin Oral Implants Res 25(6):707–713. doi:10.1111/clr.12130

    Article  PubMed  Google Scholar 

  48. Katsikogianni M, Spiliopoulou I, Dowling DP, Missirlis YF (2006) Adhesion of slime producing Staphylococcus epidermidis strains to PVC and diamond-like carbon/silver/fluorinated coatings. J Mater Sci Mater Med 17(8):679–689. doi:10.1007/s10856-006-9678-8

    Article  PubMed  Google Scholar 

  49. Kiremitci-Gumusderelioglu M, Pesmen A (1996) Microbial adhesion to ionogenic PHEMA, PU and PP implants. Biomaterials 17(4):443–449

    Article  PubMed  Google Scholar 

  50. Van der Mei HC, Bos R, Busscher HJ (1998) A reference guide to microbial cell surface hydrophobicity based on contact angles. Colloids Surf B 11:213–221

    Article  Google Scholar 

  51. Teughels W, Van Assche N, Sliepen I, Quirynen M (2006) Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 17(Suppl 2):68–81. doi:10.1111/j.1600-0501.2006.01353.x

    Article  PubMed  Google Scholar 

  52. Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2012) Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl Microbiol Biotechnol 95(2):299–311. doi:10.1007/s00253-012-4144-7

    Article  PubMed  Google Scholar 

  53. Ito H, Sasaki H, Saito K, Honma S, Yajima Y, Yoshinari M (2013) Response of osteoblast-like cells to zirconia with different surface topography. Dent Mater J 32(1):122–129

    Article  PubMed  Google Scholar 

  54. Belibasakis GN, Charalampakis G, Bostanci N, Stadlinger B (2015) Peri-implant infections of oral biofilm etiology. Adv Exp Med Biol 830:69–84. doi:10.1007/978-3-319-11038-7_4

    Article  PubMed  Google Scholar 

  55. Berglundh T, Gotfredsen K, Zitzmann NU, Lang NP, Lindhe J (2007) Spontaneous progression of ligature induced peri-implantitis at implants with different surface roughness: an experimental study in dogs. Clin Oral Implants Res 18(5):655–661. doi:10.1111/j.1600-0501.2007.01397.x

    Article  PubMed  Google Scholar 

  56. Lang NP, Berglundh T (2011) Periimplant diseases: where are we now?—consensus of the seventh european workshop on periodontology. J Clin Periodontol 38(Suppl 11):178–181. doi:10.1111/j.1600-051X.2010.01674.x

    Article  PubMed  Google Scholar 

  57. Salvi GE, Furst MM, Lang NP, Persson GR (2008) One-year bacterial colonization patterns of Staphylococcus aureus and other bacteria at implants and adjacent teeth. Clin Oral Implants Res 19(3):242–248. doi:10.1111/j.1600-0501.2007.01470.x

    Article  PubMed  Google Scholar 

  58. Ribeiro M, Monteiro FJ, Ferraz MP (2012) Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2(4):176–194. doi:10.4161/biom.22905

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kayaoglu G, Orstavik D (2004) Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Crit Rev Oral Biol Med 15(5):308–320

    Article  PubMed  Google Scholar 

  60. Burgers R, Hahnel S, Reichert TE, Rosentritt M, Behr M, Gerlach T, Handel G, Gosau M (2010) Adhesion of Candida albicans to various dental implant surfaces and the influence of salivary pellicle proteins. Acta Biomater 6(6):2307–2313. doi:10.1016/j.actbio.2009.11.003

    Article  PubMed  Google Scholar 

  61. Furst MM, Salvi GE, Lang NP, Persson GR (2007) Bacterial colonization immediately after installation on oral titanium implants. Clin Oral Implants Res 18(4):501–508. doi:10.1111/j.1600-0501.2007.01381.x

    Article  PubMed  Google Scholar 

  62. Balasubramanian D, Schneper L, Kumari H, Mathee K (2013) A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 41(1):1–20. doi:10.1093/nar/gks1039

    Article  PubMed  Google Scholar 

  63. Khan MS, Vishakante GD (2013) Development and evaluation of porous chitosan nanoparticles for treatment of enterotoxigenic Escherichia coli infection. J Biomed Nanotechnol 9(1):107–114

    Article  PubMed  Google Scholar 

  64. Wessel SW, Chen Y, Maitra A, van den Heuvel ER, Slomp AM, Busscher HJ, van der Mei HC (2014) Adhesion forces and composition of planktonic and adhering oral microbiomes. J Dent Res 93(1):84–88. doi:10.1177/0022034513511822

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chin MY, Sandham A, de Vries J, van der Mei HC, Busscher HJ (2007) Biofilm formation on surface characterized micro-implants for skeletal anchorage in orthodontics. Biomaterials 28(11):2032–2040. doi:10.1016/j.biomaterials.2006.12.014

    Article  PubMed  Google Scholar 

  66. Mei L, Ren Y, Busscher HJ, Chen Y, van der Mei HC (2009) Poisson analysis of streptococcal bond-strengthening on saliva-coated enamel. J Dent Res 88(9):841–845. doi:10.1177/0022034509342523

    Article  PubMed  Google Scholar 

  67. Busscher HJ, van der Mei HC (2012) How do bacteria know they are on a surface and regulate their response to an adhering state? PLoS Pathog 8(1):e1002440. doi:10.1371/journal.ppat.1002440

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kugler R, Bouloussa O, Rondelez F (2005) Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology 151(Pt 5):1341–1348. doi:10.1099/mic.0.27526-0

    Article  PubMed  Google Scholar 

  69. Murata H, Koepsel RR, Matyjaszewski K, Russell AJ (2007) Permanent, non-leaching antibacterial surface—2: how high density cationic surfaces kill bacterial cells. Biomaterials 28(32):4870–4879. doi:10.1016/j.biomaterials.2007.06.012

    Article  PubMed  Google Scholar 

  70. Hauser-Gerspach I, Kulik EM, Weiger R, Decker EM, Von Ohle C, Meyer J (2007) Adhesion of Streptococcus sanguinis to dental implant and restorative materials in vitro. Dent Mater J 26(3):361–366

    Article  PubMed  Google Scholar 

  71. Rimondini L, Cerroni L, Carrassi A, Torricelli P (2002) Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. Int J Oral Maxillofac Implants 17(6):793–798

    PubMed  Google Scholar 

  72. Liu C, Zhao Q, Liu Y, Wang S, Abel EW (2008) Reduction of bacterial adhesion on modified DLC coatings. Colloids Surf B Biointerfaces 61(2):182–187. doi:10.1016/j.colsurfb.2007.08.008

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Anja Stork and Bettina Spitzmüller for their excellent technical help. Dr. Marie Follo and Dr. Annette Anderson are thanked for their valuable linguistic contribution to this report and support by image processing, respectively. This study was supported by the European Commission (FP7-280741-LONGLIFE Collaborative project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamprini Karygianni.

Ethics declarations

The study protocol was reviewed and approved by the Ethics Committee of the University of Freiburg (Nr. 91/15).

Conflicts of interest

There are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schienle, S., Al-Ahmad, A., Kohal, R.J. et al. Microbial adhesion on novel yttria-stabilized tetragonal zirconia (Y-TZP) implant surfaces with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coatings. Clin Oral Invest 20, 1719–1732 (2016). https://doi.org/10.1007/s00784-015-1655-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1655-5

Keywords

Navigation