Skip to main content
Log in

Hedging under multiple risk constraints

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

Motivated by the asset–liability management problems under shortfall risk constraints, we consider in a general discrete-time framework the problem of finding the least expensive portfolio whose shortfalls with respect to a given set of stochastic benchmarks are bounded by a specific shortfall risk measure. We first show how the price of this portfolio may be computed recursively by dynamic programming for different shortfall risk measures, in complete and incomplete markets. We then focus on the specific situation where the shortfall risk constraints are imposed at each period on the next-period shortfalls, and obtain explicit results. Finally, we apply our results to a realistic asset–liability management problem of an energy company, and show how the shortfall risk constraints affect the optimal hedging of liabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Very recently (while this paper was under review), the problem of hedging multiple stochastic benchmark under probabilistic loss constraints has been addressed in [4] (see Chaps. 2 and 3) using the machinery of viscosity solutions. That author works in a Markovian complete market setting, but her assumptions allow loss functions which are less regular than those in the present paper.

  2. In our paper, the loss function is evaluated directly on a financial position \(X\) instead of \(-X\) as in [10] and [11, Chap. 4].

  3. At this point, one may argue, see e.g. [15], that discounting fixed future liabilities at an expected rate of return of the assets runs counter to the logic of financial economics. Nevertheless, regulations that mandate such discounting practices are in place in many countries, and it is important to understand their impact in practice, and in particular to quantify the actual risk of not being able to meet the future liabilities and to identify the strategies which minimize this risk.

References

  1. Bouchard, B., Elie, R., Touzi, N.: Stochastic target problems with controlled loss. SIAM J. Control Optim. 48, 3123–3150 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bouchard, B., Moreau, L., Nutz, M.: Stochastic target games with controlled loss. Ann. Appl. Probab. 24, 899–934 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouchard, B., Vu, T.N.: A stochastic target approach for P&L matching problems. Math. Oper. Res. 37, 526–558 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouveret, G.: A contribution in: Hedging and portfolio optimisation under weak stochastic target constraints. PhD thesis, Imperial College, London (February 2016). Available online at http://hdl.handle.net/10044/1/33726

  5. Boyle, P., Tian, W.: Portfolio management with constraints. Math. Finance 17, 319–343 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cour de Comptes (French public auditor): The costs of the nuclear power sector. Public report, January 2012. Available online at: http://www.ccomptes.fr/Publications/Publications/Les-couts-de-la-filiere-electro-nucleaire

  7. Detemple, J., Rindisbacher, M.: Dynamic asset liability management with tolerance for limited shortfalls. Insur. Math. Econ. 43, 281–294 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. El Karoui, N., Jeanblanc, M., Lacoste, V.: Optimal portfolio management with American capital guarantee. J. Econ. Dyn. Control 29, 449–468 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Föllmer, H., Leukert, P.: Quantile hedging. Finance Stoch. 3, 251–273 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Föllmer, H., Leukert, P.: Efficient hedging: Cost versus shortfall risk. Finance Stoch. 4, 117–146 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Föllmer, H., Schied, A.: Stochastic Finance, 1st edn. De Gruyter, Berlin (2002)

    Book  MATH  Google Scholar 

  12. Grossman, S., Vila, J.-L.: Portfolio insurance in complete markets: A note. J. Bus. 62, 473–476 (1989)

    Article  Google Scholar 

  13. Gundel, A., Weber, S.: Robust utility maximization with limited downside risk in incomplete markets. In: Stochastic Processes and Their Applications, vol. 117, pp. 1663–1688 (2007)

    Google Scholar 

  14. Martellini, L., Milhau, V.: Dynamic allocation decisions in the presence of funding ratio constraints. J. Pension Econ. Finance 11, 549–580 (2012)

    Article  Google Scholar 

  15. Novy-Marx, R., Rauh, J.: Public pension promises: How big are they and what are they worth? J. Finance 66, 1211–1249 (2011)

    Article  Google Scholar 

  16. Van Binsbergen, J.H., Brandt, M.W.: Optimal asset allocation in asset liability management. Working paper (2006). Available at SSRN: https://ssrn.com/abstract=890891

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Tankov.

Additional information

This work was partially funded by Electricité de France. We thank Marie Bernhart and Bruno Bouchard for valuable comments on a preliminary version of this paper. We are also grateful to the anonymous referee, the Associate Editor and the Co-Editor for very careful reading and valuable suggestions.

Appendices

Appendix A: Technical lemmas

Lemma A.1

Let \((\varOmega,\mathcal {F}, \mathbb{P})\) be a probability space, \(X,Y \in \mathcal {F}\) and \(\alpha,\beta\geq 0\). Then

$$\begin{aligned} V_{0} &= \inf_{m\in\mathcal {F}}\big\{ \mathbb{E}[m]: \mathbb {E}[(X-m)^{+}]\leq \alpha,\mathbb{E}[(Y-m)^{+}]\leq\beta\big\} \\ &= \max\big\{ \mathbb {E}[X-\alpha], \mathbb{E}[Y-\beta], \mathbb{E}[X\vee Y - \alpha- \beta]\big\} \end{aligned}$$

and

$$\begin{aligned} V'_{0} &= \inf_{m\in\mathcal {F}}\big\{ \mathbb{E}[m]: \mathbb{E}[\max\{(X-m)^{+}- \alpha,(Y-m)^{+}- \beta\}]\leq0 \big\} \\ &= \mathbb{E}[(X-\alpha)\vee(Y - \beta)]. \end{aligned}$$

Proof

We begin with \(V_{0}\). By considering only one of the two constraints, we have clearly

$$V_{0} \geq\max\{\mathbb{E}[X-\alpha], \mathbb{E}[Y-\beta]\}. $$

In addition,

$$(X-m)^{+} + (Y-m)^{+} \geq X\vee Y - m $$

and so

$$V_{0} \geq\mathbb{E}[X\vee Y - \alpha- \beta]. $$

To finish the proof, we need to find \(m^{*}\) which satisfies the constraint and realizes the equality.

Assume first that

$$\mathbb{E}[X\vee Y - \alpha- \beta] \geq\mathbb{E}[X-\alpha]\quad\text{and}\quad\mathbb{E}[X\vee Y - \alpha- \beta] \geq\mathbb{E}[Y-\beta]. $$

This is equivalent to

$$\mathbb{E}[(X-Y)^{+}]\geq\alpha\quad\text{and}\quad\mathbb {E}[(Y-X)^{+}]\geq \beta. $$

In this case, we can take

$$m^{*} = X \vee Y - \alpha\frac{(X-Y)^{+}}{\mathbb{E}[(X-Y)^{+}]} - \beta \frac{(Y-X)^{+}}{\mathbb{E}[(Y-X)^{+}]}. $$

If

$$\mathbb{E}[X-\alpha]\geq\mathbb{E}[X\vee Y - \alpha- \beta] \quad\text{and}\quad\mathbb{E}[X-\alpha] \geq\mathbb {E}[Y-\beta], $$

we take

$$m^{*} = X\wedge Y-\alpha+ \mathbb{E}[(X-Y)^{+}]. $$

If finally

$$\mathbb{E}[Y-\beta]\geq\mathbb{E}[X\vee Y - \alpha- \beta] \quad\text{and}\quad\mathbb{E}[Y-\beta] \geq\mathbb {E}[X-\alpha], $$

then we can take

$$m^{*} = X\wedge Y-\beta+ \mathbb{E}[(Y-X)^{+}]. $$

Now we turn to \(V_{0}^{\prime}\). Since \(m = (X-\alpha)\vee (Y-\beta)\) satisfies the constraint, it holds that \(V'_{0} \leq\mathbb {E}[(X-\alpha)\vee (Y-\beta)]\). On the other hand,

$$\begin{aligned} V'_{0} &= \inf_{m\in\mathcal {F}}\big\{ \mathbb{E}[m]: \mathbb{E}[\max\{(X-m)^{+}- \alpha,(Y-m)^{+}- \beta\}]\leq0 \big\} \\ &\geq\inf_{m\in\mathcal {F}}\big\{ \mathbb{E}[m]: \mathbb{E}[\max\{X-m- \alpha,Y-m- \beta\}]\leq0 \big\} \\ &= \inf_{m\in\mathcal {F}}\big\{ \mathbb{E}[m]: \mathbb{E}[\max\{X- \alpha,Y- \beta\}]\leq m \big\} \\ & = \mathbb{E}[(X-\alpha)\vee (Y-\beta)]. \end{aligned}$$

 □

We now consider the case when \(n\) is arbitrary, but the objectives are ordered.

Lemma A.2

Let \((\varOmega,\mathcal {F}, \mathbb{P})\) be a probability space, and let \(Z_{1},\dots,Z_{n} \in\mathcal {F}\) with \(Z_{1}\leq Z_{2}\leq\cdots\leq Z_{n} \) a.s. and \(\alpha_{1},\dots,\alpha_{n} \geq 0\). Then

$$\inf_{M\in\mathcal {F}}\big\{ \mathbb{E}[M]: \mathbb{E}[(Z_{k}-M)^{+}]\leq \alpha_{k},k=1,\dots,n\big\} = \max_{k=1,\dots,n} \{\mathbb{E}[Z_{k}] - \alpha_{k}\}. $$

Proof

1) Assume that there exists \(k\in\{1,\dots, n\}\) such that

$$\begin{aligned} \mathbb{E}[Z_{k}] - \alpha_{k} \geq \mathbb{E}[Z_{k+1}] - \alpha _{k+1}. \end{aligned}$$
(A.1)

Then the constraint \(\mathbb{E}[(Z_{k} - m)^{+}] \leq\alpha_{k}\) implies \(\mathbb{E}[(Z_{k+1} - m)^{+}] \leq\alpha_{k+1}\) since

$$\mathbb{E}[(Z_{k+1} - m)^{+}] \leq\mathbb{E}[(Z_{k} - m)^{+}] + \mathbb {E}[Z_{k+1}-Z_{k}] \leq\alpha_{k} + \alpha_{k+1} - \alpha_{k} = \alpha_{k+1}. $$

We can then remove the constraint \(\mathbb{E}[(Z_{k+1} - m)^{+}] \leq\alpha_{k+1}\) without modifying the value function. Repeating the same argument for all other indices \(k\) satisfying (A.1), we can assume without loss of generality that

$$\begin{aligned} \mathbb{E}[Z_{1}] - \alpha_{1} < \cdots< \mathbb{E}[Z_{n}] - \alpha_{n}. \end{aligned}$$
(A.2)

We then need to prove that

$$\inf_{m\in\mathcal {F}}\big\{ \mathbb{E}[m]: \mathbb{E}[(Z_{k}-m)^{+}]\leq \alpha_{k},\,k=1,\dots,n\big\} = \mathbb{E}[Z_{n}] - \alpha_{n}. $$

2) Removing all the constraints except the last one, it is easy to see that

$$\inf_{m\in\mathcal {F}}\big\{ \mathbb{E}[m]: \mathbb{E}[(Z_{k}-m)^{+}]\leq \alpha_{k},\,k=1,\dots,n\big\} \geq\mathbb{E}[Z_{n}] - \alpha_{n}. $$

To finish the proof, it is then enough to find \(m\) which satisfies the constraints and is such that \(\mathbb{E}[m] = \mathbb{E}[Z_{n}] - \alpha_{n}\).

3) If \(\mathbb{E}[Z_{n} - Z_{1}]\geq\alpha_{n}\), we let

$$k^{*} = \max\{i: \mathbb{E}[Z_{n} - Z_{i}] \geq\alpha_{n}\} $$

and

$$m:= w Z_{k^{*}} + (1-w) Z_{k^{*}+1},\quad w = \frac{\mathbb{E}[Z_{k^{*}+1}] - \mathbb{E}[Z_{n}] + \alpha_{n}}{\mathbb{E}[Z_{k^{*}+1}] - \mathbb{E}[Z_{k^{*}}]} \in[0,1]. $$

Otherwise, let \(k^{*} = 0\) and

$$m := Z_{1} - C,\quad C = \alpha_{n} - \mathbb{E}[Z_{n}-Z_{1}]. $$

By construction, we have \(\mathbb{E}[m] = \mathbb{E}[Z_{n}] - \alpha_{n} \) and since \(m \leq Z_{n}\), it also holds that \(\mathbb{E}[(Z_{n} - m)^{+}] = \alpha_{n}\). To check the other constraints, observe that if \(k\leq k^{*}\), then \(m\geq Z_{k}\) a.s. and so \(\mathbb{E}[(Z_{k} - m)^{+}] = 0\). On the other hand, if \(k>k^{*}\), then \(m\leq Z_{k}\) a.s. and so by (A.2),

$$\begin{aligned} \mathbb{E}[(Z_{k}-m)^{+}] = \mathbb{E}[Z_{k}] - \mathbb{E}[m] = \mathbb{E}[Z_{k}] - \mathbb{E}[Z_{n}] + \alpha_{n} < \alpha_{k}. \end{aligned}$$

 □

Appendix B: Explicit computations in the Black–Scholes model

In this appendix, we specialize the formulas of Propositions 4.2 and 4.3 to the Black–Scholes market with a risk-free asset evolving with zero interest rate and a risky asset which follows the Black–Scholes model

$$\frac{dX_{t}}{X_{t}} = \mu\,dt + \sigma\,dW_{t}, $$

where the rate of return \(\mu\) of the risky asset is assumed to be positive.

Complete market

We assume that the agent can trade dynamically between the benchmark dates, which means that the market is complete, and the unique risk-neutral measure has density

$$Z_{T} = e^{-\frac{\mu}{\sigma}W_{T} - \frac{\mu^{2}}{2\sigma^{2}}T}. $$

In this case,

$$D_{k} = \frac{\mu^{2}}{2p\sigma^{2}}(t_{k} - t_{k-1}). $$

To compute the value function in the case of the entropic penalty, introduce the functions

$$\text{BSPut}(S,K,v) = \mathbb{E}\big[\big(K-S e^{vZ-\frac{v^{2}}{2}}\big)^{+}\big],\quad \text{and}\quad\text{LBPut}(S,K) = \mathbb{E}[(K-S Z)^{+}], $$

where \(Z\sim N(0,1)\) and LB stands for the Louis Bachelier model. Then we obtain for \(1\leq k \leq n-1\) that \(V^{\mathit{NP}}_{k-1} = V^{\mathit{NP}}_{k}\) if \(V^{\mathit{NP}}_{k} \geq S_{k} - \rho_{k}\) and

$$\begin{aligned} V^{\mathit{NP}}_{k-1}&= V^{\mathit{NP}}_{k} \\ &\phantom{=:}+ {{\text{LBPut}\left( \frac{|\mu|}{\sigma p} \sqrt {t_{k}-t_{k-1}},\, S_{k} - V^{\mathit{NP}}_{k} - \frac{1}{p}\log\tilde{\lambda}_{k-1}-\frac{\mu^{2} (t_{k}-t_{k-1})}{2\sigma^{2} p} \right)}} \end{aligned}$$

otherwise, where \(\tilde{\lambda}_{k-1}\) is the solution to

$$\text{BSPut}\left({\tilde{\lambda}_{k-1}}, e^{-p(V^{\mathit{NP}}_{k}-S_{k})},\frac{|\mu|}{\sigma}\sqrt{t_{k}-t_{k-1}}\right) = e^{-p(V^{\mathit{NP}}_{k}-S_{k})} - e^{p\rho_{k}}. $$

The optimal strategy at date \(n-1\) consists of replicating the claim

$$S_{n} - \rho_{n} - \frac{\log U_{n}}{p}. $$

This is achieved by investing a constant amount of \({\mu}/({\sigma^{2} p})\) into the risky asset between \(t_{n-1}\) and \(t_{n}\). The optimal strategy at date \(k-1< n-1\) consists of replicating the claim with payoff at date \(k\) given by

$$V^{\mathit{NP}}_{k} + \bigg(S_{k} - V^{\mathit{NP}}_{k} - \frac{{\log\tilde{\lambda}_{k-1}}}{p} - \frac{\mu(\mu-\sigma^{2})}{2p\sigma^{2}}(t_{k} - t_{k-1}) + \frac{\mu}{\sigma^{2} p} \log\frac{X_{t_{k}}}{X_{t_{k-1}}}\bigg)^{+}. $$

For the power loss function with \(p=2\), at the last date,

$$\begin{aligned} V^{\mathit{NP}}_{n-1} = S_{n} - \sigma_{n} \sqrt{\mathbb{E}^{\mathbb{P}}[U_{n}^{2}]}, \end{aligned}$$

and at previous dates,

$$\begin{aligned} V^{\mathit{NP}}_{k-1} = V^{\mathit{NP}}_{k} + \mathbb{E}^{\mathbb{P}}[U_{k}^{2}]\, \text{BSPut}\bigg(-{{{\tilde{\lambda}_{k-1}}}},\frac{ S_{k}-V^{\mathit{NP}}_{k}}{\mathbb{E}^{\mathbb{P}}[U_{k}^{2}]}, \frac{|\mu|}{\sigma}\sqrt {t_{k}-t_{k-1}}\bigg) \end{aligned}$$

whenever \(S_{k} - V^{\mathit{NP}}_{k} > \sigma_{k}\), and \(V^{\mathit{NP}}_{k-1} = V^{\mathit{NP}}_{k}\) otherwise, where \(\tilde{\lambda}_{k-1}<0\) is the solution of

$$\frac{(V^{\mathit{NP}}_{k}-S_{k})^{2} - \sigma_{k}^{2}}{\mathbb{E}^{\mathbb{P}}[U_{k}^{2}]} = \text{BSPut}\bigg({{{\tilde{\lambda}_{k-1}^{2}}}}, \frac{(V^{\mathit{NP}}_{k}- S_{k})^{2}}{\mathbb{E}^{\mathbb{P}}[U_{k}^{2}]}, 2\frac{|\mu|}{\sigma}\sqrt{t_{k}-t_{k-1}}\bigg). $$

The optimal strategy at date \(n-1\) is to replicate the claim

$$S_{n} - \frac{\sigma_{n}}{\mathbb{E}^{\mathbb{P}}[U_{n}^{2}]^{\frac{1}{2}}} U_{n} = S_{n} - \sigma_{n} \bigg(\frac{X_{t_{k}}}{X_{t_{k-1}}}\bigg)^{-\frac{\mu }{\sigma^{2}}} \exp\big(-\mu(t_{k}-t_{k-1})/2\big), $$

which can be achieved with a constant proportion portfolio strategy. On the other hand, at date \(k-1< n-1\), one should replicate the claim with the option-like payoff

$$V^{\mathit{NP}}_{k} + \bigg(S_{k} - V^{\mathit{NP}}_{k} + \tilde{\lambda}_{k-1} \Big(\frac{X_{t_{k}}}{X_{t_{k-1}}}\Big)^{-\frac{\mu}{\sigma^{2}}} \exp\Big(\frac{\mu}{2\sigma^{2}} (\mu-\sigma^{2}) (t_{k}-t_{k-1})\Big)\bigg)^{+}. $$

Incomplete market

Now we assume that the agent cannot modify her position between the benchmark dates. This means that the market is incomplete, and the return of the risky asset between date \(t_{k-1}\) and \(t_{k}\) is given by

$$R_{k} = \frac{X_{t_{k}} - X_{t_{k-1}}}{X_{t_{k-1}}} = e^{(\mu-\frac{\sigma ^{2}}{2})(t_{k} - t_{k-1}) + \sigma(W_{t_{k}} - W_{t_{k-1}})} -1. $$

Let \(h = t_{k} - t_{k-1}\). Then

$$\begin{aligned} \mathbb{E}^{\mathbb{P}}\big[\big((1-\eta R_{k})^{+}\big)^{2}\big] &= 2(1+\eta) \text{BSPut} \big(\eta e^{\mu h}, 1+\eta, \sigma\sqrt {h}\big) \\ &\phantom{=:}- \text{BSPut}\big(\eta^{2} e^{2\mu h + \sigma^{2} h}, (1+\eta )^{2}, 2\sigma\sqrt{h}\big) \end{aligned}$$

for \(\eta>0\),

$$\mathbb{E}^{\mathbb{P}}\big[\big((1-\eta R_{k})^{+}\big)^{2}\big] = (1+\eta )^{2} -2\eta(1+\eta) e^{\mu h} + \eta^{2} e^{2\mu h + \sigma^{2} h} $$

for \(\eta\in[-1,0]\), and

$$\begin{aligned} \mathbb{E}^{\mathbb{P}}\big[\big((1-\eta R_{k})^{+}\big)^{2}\big] &=2(1+\eta) \text{BSCall} \big(-\eta e^{\mu h}, -1-\eta, \sigma\sqrt {h}\big) \\ &\phantom{=:}+ \text{BSCall}\big(\eta^{2} e^{2\mu h + \sigma^{2} h}, (1+\eta )^{2}, 2\sigma\sqrt{h}\big) \end{aligned}$$

for \(\eta< -1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Klopfenstein, O. & Tankov, P. Hedging under multiple risk constraints. Finance Stoch 21, 361–396 (2017). https://doi.org/10.1007/s00780-017-0326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-017-0326-6

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation