Skip to main content
Log in

Static hedging under maturity mismatch

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

Can shorter maturity European options be statically hedged with longer maturity plain vanilla options? This problem appears, for example, when analysing options on forwards in relation to liquid options on the spot underlying. Under mild assumptions on the underlying security price process and the option’s payoff function, we show that approximate static hedges exist and we provide a recipe for constructing them. Examples illustrate the power of the hedge and its sensitivity to modelling assumptions. The results can be extended to formulating semi-static hedging strategies for discretely monitored path-dependent contingent claims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Compare Remark 2.7.

  2. According to the L-curve criterion, one would rather choose μ=10−5, but the resulting hedging strategy entails trading approximately 20 options, which is not reasonable in practice.

  3. Again by the L-curve criterion, one would choose μ=2−7, resulting in a large number of traded options.

  4. Of course, the error from discrete rebalancing can be reduced by increasing the rebalancing frequency, but daily rebalancing is still prevalent in practice.

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1972). 9th Dover printing, 10th GPO printing edn.

    Google Scholar 

  2. Albrecher, H., Mayer, P.: Semi-static hedging strategies for exotic options. In: Kiesel, R., Scherer, M., Zagst, R. (eds.) Alternative Investments and Strategies, pp. 345–373. World Scientific, Singapore (2010)

    Chapter  Google Scholar 

  3. Andersen, L., Lipton, A.: Asymptotics for exponential Lévy processes and their volatility smile: survey and new results. Int. J. Theor. Appl. Finance 16, 1–98 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bakshi, G.S., Chen, Z.: An alternative valuation model for contingent claims. J. Financ. Econ. 44, 123–165 (1997)

    Article  Google Scholar 

  5. Bakshi, G., Madan, D.: Spanning and derivative-security valuation. J. Financ. Econ. 55, 205–238 (2000)

    Article  Google Scholar 

  6. Barndorff-Nielsen, O.: Exponentially decreasing distributions for the logarithm of particle size. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 353, 401–419 (1977)

    Article  Google Scholar 

  7. Barndorff-Nielsen, O.E.: Normal inverse Gaussian distributions and stochastic volatility modelling. Scand. J. Stat. 24, 1–13 (1997)

    Article  MathSciNet  Google Scholar 

  8. Barndorff-Nielsen, O.E.: Processes of normal inverse Gaussian type. Finance Stoch. 2, 41–68 (1998)

    Article  MathSciNet  Google Scholar 

  9. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Taylor & Francis, London (1998)

    Book  Google Scholar 

  10. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  Google Scholar 

  11. Boyarchenko, S., Levendorskii, S.: Non-Gaussian Merton–Black–Scholes Theory. World Scientific, Singapore (2002)

    Google Scholar 

  12. Breeden, D.T., Litzenberger, R.H.: Prices of state-contingent claims implicit in option prices. J. Bus. 51, 621–651 (1978)

    Article  Google Scholar 

  13. Carr, P., Bowie, J.: Static simplicity. Risk 7, 45–50 (1994)

    Google Scholar 

  14. Carr, P., Madan, D.: Towards a theory of volatility trading. In: Jarrow, R. (ed.) Risk Book on Volatility. Risk, Berlin (1998)

    Google Scholar 

  15. Carr, P., Madan, D.B.: Option valuation using the Fast Fourier Transform. J. Comput. Finance 2(4), 61–73 (1999)

    Google Scholar 

  16. Carr, P., Wu, L.: Static hedging of standard options. J. Financ. Econom. 12, 3–46 (2014)

    Article  Google Scholar 

  17. Carr, P., Ellis, K., Gupta, V.: Static hedging of exotic options. J. Finance 53, 1165–1190 (1998)

    Article  Google Scholar 

  18. Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75, 305–333 (2002)

    Article  Google Scholar 

  19. Conway, J.: A Course in Functional Analysis, 2nd edn. Springer, New York (1990)

    Google Scholar 

  20. Derman, E., Ergener, D., Kani, I.: Static options replication. J. Deriv. 2, 78–95 (1995)

    Article  Google Scholar 

  21. Dupire, B.: Pricing with a smile. Risk 7, 18–20 (1994)

    Google Scholar 

  22. Eberlein, E., Raible, S.: Some analytic facts on the generalized hyperbolic model. In: European Congress of Mathematics, pp. 367–378. Springer, New York (2001)

    Chapter  Google Scholar 

  23. Eberlein, E.: Application of generalized hyperbolic Lévy motions to finance. In: Barndorff-Nielsen, O., Mikosch, T., Resnick, S. (eds.) Lévy Processes—Theory and Application, pp. 319–336. Springer, Berlin (2001)

    Chapter  Google Scholar 

  24. Engelmann, B., Fengler, M.R., Nalholm, M., Schwendner, P.: Static versus dynamic hedges: an empirical comparison for barrier options. Rev. Deriv. Res. 9, 239–264 (2006)

    Article  Google Scholar 

  25. Green, R.C., Jarrow, R.A.: Spanning and completeness in markets with contingent claims. J. Econ. Theory 41, 202–210 (1987)

    Article  MathSciNet  Google Scholar 

  26. Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Princeton Univ. Bull. 13, 49–52 (1902)

    MathSciNet  Google Scholar 

  27. Hansen, P.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  28. Hansen, P.: Discrete Inverse Problems: Insight and Algorithms. SIAM, Philadelphia (2010)

    Book  Google Scholar 

  29. Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6, 327 (1993)

    Article  Google Scholar 

  30. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)

    Book  Google Scholar 

  31. Kou, S.G.: A jump-diffusion model for option pricing. Manag. Sci. 48, 1086–1101 (2002)

    Article  Google Scholar 

  32. Lewis, A.L.: A simple option formula for general jump-diffusion and other exponential Lévy processes (September 2001). Available at SSRN: http://ssrn.com/abstract=282110 or http://dx.doi.org/10.2139/ssrn.282110

  33. Lipton, A.: The vol smile problem. Risk 15, 61–66 (2002)

    Google Scholar 

  34. Madan, D., Seneta, E.: The variance gamma (VG) model for share market returns. J. Bus. 63(4), 511–524 (1990)

    Article  Google Scholar 

  35. Madan, D., Carr, P., Chang, E.: The variance gamma process and option pricing. Eur. Finance Rev. 2, 79–105 (1998)

    Article  Google Scholar 

  36. Merton, R.C.: Option pricing when the underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976)

    Article  Google Scholar 

  37. Nachman, D.C.: Spanning and completeness with options. Rev. Financ. Stud. 1, 311–328 (1988)

    Article  Google Scholar 

  38. Nalholm, M., Poulsen, R.: Static hedging and model risk for barrier options. J. Futures Mark. 26, 449–463 (2006)

    Article  Google Scholar 

  39. Press, W.H., Teukolsky, S.A., Vetterling, V., Flannery, B.P.: Numerical Recipes in C: the Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  40. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, San Francisco (1987)

    Google Scholar 

  41. Schoutens, W.: Lévy Processes in Finance. Wiley, New York (2003)

    Book  Google Scholar 

  42. Scott, L.O.: Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates: applications of Fourier inversion methods. Math. Finance 7, 413–426 (1997)

    Article  MathSciNet  Google Scholar 

  43. Tompkins, R.G.: Static versus dynamic hedging of exotic options: an evaluation of hedge performance via simulation. J. Risk Finance 3, 6–34 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie Packham.

Appendices

Appendix A: Application of the Nyquist–Shannon theorem

We apply the Nyquist–Shannon theorem (Whittaker–Shannon theorem, sampling theorem) to derive an approximate hedging strategy for a call option; see e.g. Sect. 2.2 of Bertero and Boccacci [9] for the theorem.

Theorem A.1

(Nyquist–Shannon theorem)

Let f be a bandlimited and square-integrable function with band interior to the interval [−Ω,Ω]. Then

$$ f(x) = \sum_{n=-\infty}^\infty f\left(n\frac{\pi}{\varOmega}\right) \operatorname{sinc}\left(\frac{\varOmega}{\pi} \left(x-n\frac{\pi }{\varOmega}\right)\right), $$
(A.1)

where \(\operatorname{sinc} x= \frac{\sin(\pi x)}{\pi x}\).

In the following, we set τ:=π/Ω.

Let us first assume that \(\tilde{p}\) satisfies the conditions of Lemma 3.1. Then, assuming that \(\tilde{p}\) has bandwidth Ω and using the decomposition (A.1), we obtain, using that the Fourier transform (FT) is a linear transform,

$$\begin{aligned} \tilde{g} &= \mathfrak {F}^{-1}\bigg(\frac{\mathfrak {F}(\tilde{p})}{\mathfrak {F}(\gamma)}\bigg) = \mathfrak {F}^{-1}\bigg(\frac{\mathfrak {F}(\sum_{n=-\infty}^\infty\tilde{p}(n \tau) \operatorname{sinc}\left(1/\tau(x-n\tau)\right))}{\mathfrak {F}(\gamma)}\bigg)\\ &= \sum_{n=-\infty}^\infty \mathfrak {F}^{-1}\bigg(\frac{\tilde{p}(n\tau) \mathfrak {F}(\operatorname{sinc}\left(1/\tau (x-n\tau)\right))}{\mathfrak {F}(\gamma)}\bigg)\\ &= \sum_{n=-\infty}^\infty\tilde{p}(n\tau) \mathfrak {F}^{-1}\bigg(\frac{\mathfrak {F}(\operatorname{sinc}\left(1/\tau (x-n\tau)\right))}{\mathfrak {F}(\gamma)}\bigg). \end{aligned}$$

The FT of the sinc function is given by

$$ \mathfrak {F}(\operatorname{sinc})(\omega) = \mathbf{1}_{\{-\pi,\pi\}}(\omega). $$

By using that the FT has the properties

$$\begin{aligned} \mathfrak {F}\big(f(x-x_0)\big)(\omega) =& \mathrm{e}^{i\omega x_0} \mathfrak {F}(f)(\omega ), \quad x_0\in\mathbb{R},\\ \mathfrak {F}\big(f(a x)\big)(\omega) =& \frac{1}{a} \mathfrak {F}(f)\left(\frac{\omega}{a}\right), \quad a\neq0, \end{aligned}$$

we obtain

$$\begin{aligned} \mathfrak {F}\Big(\operatorname{sinc}\big(1/\tau(x-n\tau)\big)\Big)(\omega) =& \tau \mathfrak {F}\big(\operatorname{sinc}(x-n\tau)\big)\left(\omega\tau\right) \\ = &\tau\mathrm{e}^{i\omega\mathrm{n}\tau} \mathfrak {F}(\operatorname {sinc})(\omega\tau)\\ =& \tau\mathrm{e}^{i\omega n\tau} \mathbf{1}_{\{-\pi/\tau,\pi/\tau\} }(\omega). \end{aligned}$$

Continuing above, we have

$$\begin{aligned} \tilde{g}(x) =& \sum_{n=-\infty}^\infty\tilde{p}(n\tau) \mathfrak {F}^{-1}\bigg(\frac{\tau\mathrm{e}^{-i\omega n\tau \mathbf{1}_{\{-\pi/\tau,\pi/\tau\}}(\omega)}}{\mathfrak {F}(\gamma)(\omega )}\bigg)(x)\\ =& \sum_{n=-\infty}^\infty\tilde{p}(n\tau) \frac{1}{2\pi} \int_{-\pi/\tau}^{\pi/\tau} \frac{\tau\mathrm {e}^{i\omega n \tau} }{\mathfrak {F}(\gamma)(\omega)} \mathrm{e}^{-i\omega x}\, \mathrm {d}\omega, \end{aligned}$$

which can be calculated numerically, using (2.3) and (2.4) to calculate \(\mathfrak {F}(\gamma)\).

If the payoff function \(\tilde{p}\) is not bandlimited, one can approximate the hedging strategy by forcing \(\tilde{p}\) to be bandlimited through an appropriate choice of Ω.

The example in Fig. 1 is parameterised as follows. The payoff to be hedged (resp., replicated) is a call option with strike K=0.9 maturing at 0.5, that is, the payoff is \(p(x)=\left(\mathrm{e}^{x}-0.9\right)^{+}\), and \(\tilde{p}(x)=\mathrm {e}^{-(1+\alpha) x} (\mathrm{e}^{x}-0.9)^{+}\). We choose α=1. The hedging instruments are call options maturing at time 1. We assume a BSM model for the underlying asset price process, with volatility σ=0.16836.

In order to apply the Nyquist–Shannon theorem, we choose Ω=16 so that τ=π/16, and furthermore, we let the sum in (A.1) range from −30 to 30.

Appendix B: Market data

Table 4 Implied volatilities of options on the S&P 500 index on 15 May 2013. Source, Bloomberg
Table 5 Call prices derived from implied volatilities, assuming S 0=1 and r=q=0
Fig. 7
figure 7

Calibration results. Circles are market implied volatilities of call options for several maturities and strikes, crosses are corresponding model implied volatilities. (Top) BSM; (middle) CGMY; (bottom) Heston

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayer, P.A., Packham, N. & Schmidt, W.M. Static hedging under maturity mismatch. Finance Stoch 19, 509–539 (2015). https://doi.org/10.1007/s00780-014-0254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-014-0254-7

Keywords

Mathematics Subject Classification

JEL Classification

Navigation