Skip to main content
Log in

Multi-portfolio time consistency for set-valued convex and coherent risk measures

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

Equivalent characterizations of multi-portfolio time consistency are deduced for closed convex and coherent set-valued risk measures on \(L^{p}({\varOmega,\mathcal{F},\mathbb{P}; \mathbb{R}^{d}})\) with image space in the power set of \(L^{p}({\varOmega,\mathcal{F}_{t},\mathbb{P}; \mathbb{R}^{d}})\). In the convex case, multi-portfolio time consistency is equivalent to a cocycle condition on the sum of minimal penalty functions. In the coherent case, multi-portfolio time consistency is equivalent to a generalized version of stability of the dual variables. As examples, the set-valued entropic risk measure with constant risk aversion coefficient is shown to satisfy the cocycle condition for its minimal penalty functions; the set of superhedging portfolios is shown to have in markets with proportional transaction costs the stability property and to satisfy in markets with convex transaction costs the composed cocycle condition; and a multi-portfolio time-consistent version of the set-valued average value at risk, the composed AV@R, is given, and its dual representation deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acciaio, B., Penner, I.: Dynamic risk measures. In: Di Nunno, G., Øksendal, B. (eds.) Advanced Mathematical Methods for Finance, pp. 1–34. Springer, Berlin (2011)

    Chapter  Google Scholar 

  2. Ararat, C., Hamel, A.H., Rudloff, B.: Set-valued shortfall and divergence risk measures. Preprint (2014). http://arxiv.org/pdf/1405.4905.pdf

  3. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Thinking coherently. Risk 10, 68–71 (1997)

    Google Scholar 

  4. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D., Ku, H.: Coherent multiperiod risk adjusted values and Bellman’s principle. Ann. Oper. Res. 152, 5–22 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Systems & Control. Birkhäuser, Basel (1990)

    MATH  Google Scholar 

  7. Ben Tahar, I., Lépinette, E.: Vector-valued risk measure processes. Int. J. Theor. Appl. Finance 17, 1450011 (2014)

    Article  MathSciNet  Google Scholar 

  8. Bion-Nadal, J.: Conditional risk measures and robust representation of convex risk measures. Ecole Polytechnique, CMAP. Preprint no. 557 (2004). http://www.cmap.polytechnique.fr/preprint/repository/557.pdf

  9. Bion-Nadal, J.: Dynamic risk measures: time consistency and risk measures from BMO martingales. Finance Stoch. 12, 219–244 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bion-Nadal, J.: Time consistent dynamic risk processes. In: Stochastic Processes and Their Applications, vol. 119, pp. 633–654 (2009)

    Google Scholar 

  11. Cheridito, P., Delbaen, F., Kupper, M.: Dynamic monetary risk measures for bounded discrete-time processes. Electron. J. Probab. 11, 57–106 (2006)

    Article  MathSciNet  Google Scholar 

  12. Cheridito, P., Kupper, M.: Composition of time-consistent dynamic monetary risk measures in discrete time. Int. J. Theor. Appl. Finance 14, 137–162 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cheridito, P., Stadje, M.: Time-inconsistency of VaR and time-consistent alternatives. Finance Res. Lett. 6, 40–46 (2009)

    Article  Google Scholar 

  14. Delbaen, F.: The structure of m-stable sets and in particular of the set of risk neutral measures. In: Émery, M., Yor, M. (eds.) Memoriam Paul-André Meyer. Lecture Notes in Mathematics, vol. 1874, pp. 215–258. Springer, Berlin (2006)

    Chapter  Google Scholar 

  15. Delbaen, F., Peng, S., Rosazza Gianin, E.: Representation of the penalty term of dynamic concave utilities. Finance Stoch. 14, 449–472 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Detlefsen, K., Scandolo, G.: Conditional and dynamic convex risk measures. Finance Stoch. 9, 539–561 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Feinstein, Z., Rudloff, B.: Time consistency of dynamic risk measures in markets with transaction costs. Quant. Finance 13, 1473–1489 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Feinstein, Z., Rudloff, B.: A comparison of techniques for dynamic multivariate risk measures. In: Hamel, A., Heyde, F., Löhne, A., Rudloff, B., Schrage, C. (eds.) Set Optimization and Applications in Finance—The State of the Art. Springer Proceedings in Mathematics & Statistics Springer, Berlin (2014). http://arxiv.org/pdf/1305.2151.pdf

    Google Scholar 

  19. Föllmer, H., Penner, I.: Convex risk measures and the dynamics of their penalty functions. Stat. Decis. 24, 61–96 (2006)

    MATH  Google Scholar 

  20. Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stoch. 6, 429–447 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time, 3rd edn. De Gruyter Studies in Mathematics. de Gruyter, Berlin (2011)

    Book  Google Scholar 

  22. Frittelli, M., Rosazza Gianin, E.: Putting order in risk measures. J. Bank. Finance 26, 1473–1486 (2002)

    Article  Google Scholar 

  23. Frittelli, M., Rosazza Gianin, E.: Dynamic convex risk measures. In: Szegö, G.P. (ed.) New Risk Measures for the 21st Century, pp. 227–248. Wiley, New York (2004)

    Google Scholar 

  24. Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. CMS Books in Mathematics. Springer, Berlin (2003)

    MATH  Google Scholar 

  25. Hamel, A.H.: A duality theory for set-valued functions I: Fenchel conjugation theory. Set-Valued Var. Anal. 17, 153–182 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hamel, A.H., Heyde, F.: Duality for set-valued measures of risk. SIAM J. Financ. Math. 1, 66–95 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hamel, A.H., Heyde, F., Rudloff, B.: Set-valued risk measures for conical market models. Math. Financ. Econ. 5, 1–28 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hamel, A.H., Rudloff, B.: Continuity and finite-valuedness of set-valued risk measures. In: Tammer, C., Heyde, F. (eds.) Festschrift in Celebration of Prof. Dr. Wilfried Greckschs’ 60th Birthday, pp. 46–64. Shaker, Aachen (2008)

    Google Scholar 

  29. Hamel, A.H., Rudloff, B., Yankova, M.: Set-valued average value at risk and its computation. Math. Financ. Econ. 7, 229–246 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Heyde, F., Schrage, C.: Continuity concepts for set-valued functions and a fundamental duality formula for set-valued optimization. J. Math. Anal. Appl. 397, 772–784 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis: Volume I: Theory. Mathematics and Its Applications. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  32. Jouini, E., Meddeb, M., Touzi, N.: Vector-valued coherent risk measures. Finance Stoch. 8, 531–552 (2004)

    MATH  MathSciNet  Google Scholar 

  33. Kabanov, Y.M.: Hedging and liquidation under transaction costs in currency markets. Finance Stoch. 3, 237–248 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kabanov, Y.M., Safarian, M.: Markets with Transaction Costs: Mathematical Theory. Springer, Berlin (2009)

    Google Scholar 

  35. Klöppel, S., Schweizer, M.: Dynamic indifference valuation via convex risk measures. Math. Finance 17, 599–627 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Löhne, A.: Vector Optimization with Infimum and Supremum. Vector Optimization. Springer, Berlin (2011)

    Book  Google Scholar 

  37. Löhne, A., Rudloff, B.: An algorithm for calculating the set of superhedging portfolios in markets with transaction costs. Int. J. Theor. Appl. Finance 17, 1450012 (2014)

    Article  MathSciNet  Google Scholar 

  38. Pennanen, T., Penner, I.: Hedging of claims with physical delivery under convex transaction costs. SIAM J. Financ. Math. 1, 158–178 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  39. Riedel, F.: Dynamic coherent risk measures. In: Stochastic Processes and Their Applications, vol. 112, pp. 185–200 (2004)

    Google Scholar 

  40. Ruszczynski, A., Shapiro, A.: Conditional risk mappings. Math. Oper. Res. 31, 544–561 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. Schachermayer, W.: The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time. Math. Finance 14, 19–48 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  42. Yan, J.-A.: On the commutability of essential infimum and conditional expectation operations. Chin. Sci. Bull. 30, 1013–1018 (1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Rudloff.

Additional information

First author supported by NSF RTG grant 0739195. Second author supported by NSF award DMS-1007938.

Appendices

Appendix A: On the relationship of dual variables at different times

In considering how closed convex (and coherent) risk measures relate through time, we must consider how the sets of dual variables relate. In the following lemma, we provide such a relationship between elements of \(\mathcal{W}_{t}\) and elements of \(\mathcal{W}_{s}\) for any times t,s with ts. In fact, we define a mapping on \(\mathcal{W}_{t}\) that is equivalent (in the set-valued replacement for continuous linear functionals) in \(\mathcal{W} _{s}\). In the scalar framework, this type of property is not needed since the set \(\mathcal{W}_{t}\) can be simplified to any \(\mathbb{Q}\ll \mathbb{P}\) for any time t (where \(\mathbb{Q}= \mathbb{P}|_{\mathcal{F}_{t}}\)).

Lemma A.1

For any choice of times t and s>t, it follows that

  1. (1)

    \(\{(\mathbb{Q}^{s},w_{t}^{s}(\mathbb{Q},w)): (\mathbb{Q},w) \in \mathcal{W}_{t}\} \subseteq\mathcal{W}_{s}\).

  2. (2)

    For every \((\mathbb{R},v) \in\mathcal{W}_{s}\), there exists \((\mathbb{Q},w) \in\mathcal{W}_{t}\) with \(F_{(\mathbb{R},v)}^{s} = F_{(\mathbb {Q}^{s},w_{t}^{s}(\mathbb{Q},w))}^{s}\).

Proof

(1) We have \(\{(\mathbb{Q}^{s},w_{t}^{s}(\mathbb{Q},w)): (\mathbb{Q},w) \in\mathcal{W}_{t}\} \subseteq\mathcal{W}_{s}\) if and only if for every pair \((\mathbb {Q},w) \in\mathcal{W}_{t}\), it follows that \(w_{t}^{s}(\mathbb{Q},w) \in M_{s,+}^{+} \backslash M_{s}^{\perp}\) and \(w_{s}^{T}(\mathbb{Q}^{s},w_{t}^{s}(\mathbb{Q},w)) \in L^{q}_{+}\). So let \((\mathbb{Q} ,w) \in\mathcal{W}_{t}\). To show that \(w_{t}^{s}(\mathbb{Q},w) \in M_{s,+}^{+} \backslash M_{s}^{\perp}\), let m s M s,+. Then

$$\mathbb{E}[w_t^{s}(\mathbb{Q},w)^{\mathsf{T}} m_{s}] = \mathbb {E}\big[w^{\mathsf{T}} \mathbb{E}^{\mathbb{Q}}[m_{s} | \mathcal {F}_{t}]\big] \geq0 $$

since \(\mathbb{E}^{\mathbb{Q}}[m_{s}|\mathcal{F}_{t}] \in M_{t,+}\) by \(M_{t} \supseteq M_{s} \cap L^{p}_{t}\) and \(M_{s} = L^{p}_{s}(M)\). Since \((\mathbb{Q},w) \in \mathcal{W}_{t}\), in particular, since \(w\notin M_{t}^{\perp}\), there exists m t M t M s with \(\mathbb{E}[w^{\mathsf{T}} m_{t}] \neq0\). Then

$$\mathbb{E}[w_t^{s}(\mathbb{Q},w)^{\mathsf{T}} m_t] = \mathbb{E}\big[w^{\mathsf{T}} \mathbb{E}^{\mathbb{Q}}[m_t | \mathcal{F}_{t}]\big] = \mathbb{E}[w^{\mathsf{T}} m_t] \neq0. $$

Finally, \(w_{s}^{T}(\mathbb{Q}^{s},w_{t}^{s}(\mathbb{Q},w)) = w_{t}^{T}(\mathbb{Q},w) \in L^{q}_{+}\) by \((\mathbb{Q},w) \in\mathcal{W}_{t}\).

(2) By Lemma 4.5 in [17], for every \((\mathbb{R},v) \in \mathcal{W}_{s}\), there exists a \((Y,\bar{v})\) such that \(Y \in L^{q}_{+}\) and \(\bar{v} \in(\mathbb{E}[Y| \mathcal{F}_{s}] + M_{s}^{\perp}) \backslash M_{s}^{\perp}\) with \(F_{(\mathbb{R},v)}^{s} = \tilde{F}_{(Y,\bar{v})}^{s}\). Moreover, for every \((Y,\bar{v})\) with \(Y \in L^{q}_{+}\) and \(\bar{v} \in(\mathbb{E}[Y| \mathcal{F}_{s}] + M_{s}^{\perp}) \backslash M_{s}^{\perp}\), there exists \((\hat{\mathbb{Q}},w_{s})\in\mathcal{W}_{s}\) with \(\tilde{F}_{(Y,\bar{v})}^{s} = F_{(\hat{\mathbb{Q}},w_{s})}^{s}\) by setting \(w_{s} = \mathbb{E}[Y | \mathcal{F}_{s}]\) and

$$\bar{\xi}_{r,s}^i[\omega] = \begin{cases}\frac{\mathbb{E}[Y_i | \mathcal{F}_{s}](\omega )}{\mathbb{E}[Y_i | \mathcal{F}_{r}](\omega)} &\text{if } \mathbb{E}[Y_i | \mathcal{F}_{r}](\omega) > 0\\ 1 &\text{else} \end{cases} $$

for every ωΩ, and \(\frac{d\hat{\mathbb {Q}}_{i}}{d\mathbb{P}} = \bar{\xi }_{s,T}^{i}\). Define \(\mathbb{Q} \in\mathcal{M}\) by \(\frac{d\mathbb {Q}_{i}}{d\mathbb{P}}= \bar{\xi}_{t,T}^{i}\); thus, \(\mathbb{Q}^{s} = \hat{\mathbb{Q}}\). Therefore, it remains to show that there exists a \(w_{t} \in L^{q}_{t}\) such that \(w_{s} = w_{t}^{s}(\mathbb {Q},w_{t})\) and \((\mathbb{Q} ,w_{t}) \in\mathcal{W}_{t}\). Let \(w_{t} :=\mathbb{E}[w_{s}| \mathcal {F}_{t}] =\mathbb{E}[Y| \mathcal{F}_{t}] \).

We want to show \(w_{s} = w_{t}^{s}(\mathbb{Q},w_{t})\), that is, \((w_{s})_{i}(\omega) = (w_{t})_{i}(\omega) \bar{\xi}_{t,s}^{i}(\omega)\) for every index i=1,…,d and almost every ωΩ. We know that if \(\mathbb{E} [Y_{i} | \mathcal{F}_{t}] (\omega) = 0\), then (w t ) i (ω)=0 and (w s ) i (ω)=0, and thus \((w_{s})_{i}(\omega) = (w_{t}^{s}(\mathbb{Q} ,w_{t}))_{i}[\omega]\). If \(\mathbb{E}[Y_{i}| \mathcal{F}_{t}] (\omega) > 0\), then

$$\begin{aligned} w_t^{s}(\mathbb{Q},w_t)_i[\omega] &= \mathbb{E}[Y_i | \mathcal {F}_{t}](\omega) \frac{\mathbb{E}[Y_i | \mathcal{F}_{s}](\omega )}{\mathbb{E}[Y_i | \mathcal{F}_{t}](\omega)}= \mathbb{E}[Y_i | \mathcal{F}_{s}](\omega) = (w_{s})_i(\omega). \end{aligned}$$

Now we show that \((\mathbb{Q},w_{t}) \in\mathcal{W}_{t}\). To show first that \(w_{t} \in M_{t,+}^{+} \backslash M_{t}^{\perp}\), let m t M t,+; then \(\mathbb{E}[w_{t}^{\mathsf{T}} m_{t}] = \mathbb{E}[\mathbb {E}[w_{s}| \mathcal{F}_{t}] m_{t}^{\mathsf{T}}] = \mathbb {E}[w_{s}^{\mathsf{T}} m_{t}] \geq0\) due to the tower property, M t,+M s,+ and \(w_{s}\in M_{s,+}^{+} \). Since \((\mathbb{Q} ^{s},w_{s}) \in\mathcal{W}_{s}\), in particular, since \(w_{s}\notin M_{s}^{\perp}\), there exists m s M s with \(\mathbb{E}[w_{s}^{\mathsf{T}} m_{s}] \neq0\). Then \(\mathbb {E}^{\mathbb{Q}}[m_{s} | \mathcal{F}_{t}] \in M_{t}\) by \(M_{t} \supseteq M_{s} \cap L^{p}_{t}\) and \(M_{s} = L^{p}_{s}(M)\). Hence,

$$\mathbb{E}\big[w_t^{\mathsf{T}} \mathbb{E}^\mathbb{Q}[m_{s}| \mathcal{F}_t]\big] = \mathbb{E}[w_t^{s}(\mathbb{Q},w_t)^{\mathsf{T}} m_{s}] = \mathbb{E}[w_{s}^{\mathsf{T}} m_{s}] \neq0. $$

Finally, \(w_{t}^{T}(\mathbb{Q},w_{t}) = w_{s}^{T}(\mathbb {Q}^{s},w_{t}^{s}(\mathbb{Q},w_{t})) = w_{s}^{T}(\hat{\mathbb{Q}},w_{s}) \in L^{q}_{+}\). □

The following corollary of Lemma A.1 uses the above result applied to penalty functions instead of the functionals F (⋅,⋅)[⋅].

Corollary A.2

For any \((\mathbb{R},v) \in\mathcal{W}_{s}\), there exists \((\mathbb {Q},w) \in\mathcal{W}_{t}\) such that

$$-\beta_{s}^{\min}(\mathbb{R},v) = -\beta_{s}^{\min}\big(\mathbb {Q}^{s},w_t^{s}(\mathbb{Q},w)\big) $$

for any times 0≤t<sT.

Proof

We have

$$\begin{aligned} -\beta_{s}^{\min}(\mathbb{R},v) & = \operatorname{cl}\bigcup_{Z \in A_{s}}\!\! F_{(\mathbb{R} ,v)}^{s}[Z] \\ &= \operatorname{cl}\bigcup_{Z \in A_{s}}\!\! F_{(\mathbb {Q}^s,w_t^{s}(\mathbb{Q},w))}^{s}[Z] = -\beta_{s}^{\min}\big(\mathbb{Q}^{s},w_t^{s}(\mathbb{Q},w)\big), \end{aligned}$$

where the second equality is a result of Lemma A.1. □

Lemma A.1 and Corollary A.2 show that for any times ts and for a given penalty function \(-\beta_{s}^{\min}\), the set of dual variables \(\{(\mathbb{Q} ^{s},w_{t}^{s}(\mathbb{Q},w)): (\mathbb{Q},w) \in\mathcal{W}_{t}\}\) defines the same closed and convex risk measure at time s as the set of dual variables \(\mathcal{W} _{s}\), that is,

$$\begin{aligned} R_{s}(X)& = \bigcap_{(\mathbb{Q},w) \in\mathcal{W}_t} \Big(-\beta _{s}^{\min}\big(\mathbb{Q} ^{s},w_t^{s}(\mathbb{Q},w)\big) + \mathbb{E}^{\mathbb{Q}}[-X | \mathcal{F}_{s}] + G_{s}\big(w_t^{s}(\mathbb{Q} ,w)\big)\Big) \cap M_{s}. \end{aligned}$$

The following lemma about the expectation of minimal penalty functions is an extension of Lemma 2.6 in [19]. As a set-valued operation, this theorem gives a set-valued version of when the conditional expectation of an infimum is equivalent to the infimum of the conditional expectation. The proof of the lemma is a simplified version of the proof of Lemma 2.6 in [19] since the sets \(\{\mathbb {E}^{\mathbb{Q}}[X| \mathcal{F} _{t}] + G_{t}(w)\}\) are shifted half-spaces for any XA t and a fixed \((\mathbb{Q},w) \in\mathcal{W}_{t}\) and thus are completely ordered, in contrast to the scalar case, where the points \(\mathbb{E}^{\mathbb{Q}}[X| \mathcal{F}_{t}]\) under consideration are not completely ordered.

Lemma A.3

For any times 0≤t<sT and if R t is a closed convex risk measure, then for any \((\mathbb{Q},w) \in\mathcal{W}_{t}\), it follows that

$$\mathbb{E}^\mathbb{Q}\big[-\beta_{s}^{\min}\big(\mathbb {Q}^{s},w_t^{s}(\mathbb{Q},w)\big)\big| \mathcal{F}_t\big]= \operatorname{cl}\bigcup_{X \in A_{s}} \big(\mathbb{E}^{\mathbb {Q}}[X | \mathcal{F}_{t}] + G_t(w)\big) \cap M_t. $$

Proof

Let \((\mathbb{Q},w) \in\mathcal{W}_{t}\). Then by Lemma A.1, \((\mathbb{Q} ^{s},w_{t}^{s}(\mathbb{Q},w))\in\mathcal{W}_{s}\). It holds

$$\begin{aligned} &-\beta_{s}^{\min} \big(\mathbb{Q}^{s},w_t^{s}(\mathbb{Q},w)\big) \\ &\quad= \operatorname{cl}\bigcup_{X \in A_{s}} \Big(\mathbb{E}^{\mathbb {Q}}[X | \mathcal{F}_{s}] + G_{s}\big(w_t^{s}(\mathbb{Q} ,w)\big)\Big) \cap M_{s} \\ &\quad= \operatorname{cl}\bigcup_{X \in A_{s}}\big\{ u \in M_{s}: \mathbb {E}\big[w_t^{s}(\mathbb{Q} ,w)^{\mathsf{T}} \mathbb{E}^{\mathbb {Q}}[X | \mathcal{F}_{s}]\big] \leq\mathbb{E}[w_t^{s}(\mathbb {Q},w)^{\mathsf{T}}u]\big\} \\ &\quad= \operatorname{cl}\bigcup_{X \in A_{s}} \big\{ u \in M_{s}: \mathbb {E}\big[w^{\mathsf{T}}\mathbb{E}^{\mathbb{Q}}[X | \mathcal {F}_{t}]\big] \leq\mathbb{E}\big[w^{\mathsf{T}}\mathbb {E}^{\mathbb{Q}}[u | \mathcal{F}_{t}]\big]\big\} \\ &\quad= \Big\{ u \in M_{s}: \inf_{X \in A_{s}} \mathbb{E}\big[w^{\mathsf {T}}\mathbb{E}^{\mathbb{Q}}[X | \mathcal{F}_{t}]\big] \leq\mathbb{E}\big[w^{\mathsf{T}}\mathbb{E}^{\mathbb{Q}}[u | \mathcal{F}_{t}]\big]\Big\} . \end{aligned}$$

Taking the conditional expectation on both sides yields

$$\begin{aligned} &\mathbb{E}^\mathbb{Q}\big[-\beta_{s}^{\min}\big(\mathbb {Q}^{s},w_t^{s}(\mathbb{Q},w)\big)\big|\mathcal{F}_t\big] \\ &\quad= \Big\{ \mathbb{E}^{\mathbb{Q}}[u | \mathcal{F}_{t}]: u \in M_{s},\inf_{X \in A_{s}} \mathbb{E}\big[w^{\mathsf{T}}\mathbb {E}^{\mathbb{Q}}[X | \mathcal{F}_{t}]\big] \leq\mathbb{E}\big[w^{\mathsf{T}}\mathbb{E}^{\mathbb{Q}}[u | \mathcal{F}_{t}]\big]\Big\} \\ &\quad=\Big\{ u \in M_t:\inf_{X \in A_{s}} \mathbb{E}\big[w^{\mathsf {T}}\mathbb{E}^{\mathbb{Q}}[X | \mathcal{F}_{t}]\big] \leq\mathbb{E}[w^{\mathsf{T}}u]\Big\} \\ &\quad= \operatorname{cl}\bigcup_{X \in A_{s}} \big(\mathbb{E}^{\mathbb {Q}}[X | \mathcal{F}_{t}] + G_t(w)\big) \cap M_t. \end{aligned}$$

 □

One can now show that the \(\mathbb{Q}\)-conditional expectation (at time t) of the positive half-space defined by \(w_{t}^{s}(\mathbb{Q},w)\) is given by the positive half-space defined by w.

Corollary A.4

Let 0≤t<sT, \(\mathbb{Q}\in\mathcal{M}\) where \(\mathbb {Q}= \mathbb{P}|_{\mathcal{F}_{t}}\), and \(w \in L^{q}_{t}\). Then

$$\mathbb{E}^{\mathbb{Q}}[G_{s}\big(w_t^{s}(\mathbb{Q},w)\big) | \mathcal{F}_{t}] = G_t(w). $$

Proof

This is a special case of Lemma A.3, obtained for \(M = \mathbb{R}^{d}\) and \(A_{s} = L^{p}_{+}\). □

We conclude our discussion on how dual variables across time are related by considering the conditional expectations of the \(\alpha _{s}^{\min}\) and Γ s functions used in the dual representation of conditionally convex risk measures (see Corollary 2.4).

Lemma A.5

For any times 0≤t<sT and if R t is a closed conditionally convex risk measure, then for any \((\mathbb{Q},w) \in \mathcal{W}_{t}\) with \(\mathbb{Q}\in\mathcal{M}^{e}\), it follows that

$$\operatorname{cl}\mathbb{E}^\mathbb{Q}\big[-\alpha_s^{\min}\big(\mathbb{Q}^s,w_t^s(\mathbb{Q},w)\big)\big|\mathcal{F}_t\big] = \operatorname{cl}\bigcup_{Z \in A_s} \big(\mathbb{E}^{\mathbb {Q}}[Z | \mathcal{F}_{t}] + \varGamma_t(w)\big) \cap M_t. $$

Proof

“⊆”: We have

$$\begin{aligned} &\mathbb{E}^\mathbb{Q}\big[-\alpha_s^{\min}\big(\mathbb {Q}^s,w_t^s(\mathbb{Q},w)\big)\big| \mathcal{F}_t\big] \\ &\quad =\Big\{ \mathbb{E}^{\mathbb{Q}}[u_s | \mathcal{F}_{t}]: u_s \in M_s, w_t^s(\mathbb{Q},w)^{\mathsf{T}}u_s \geq\mathop{\mathrm{ess\,inf}} _{Z \in A_s} w_t^s(\mathbb{Q},w)^{\mathsf{T}}\mathbb{E}^{\mathbb {Q}}[Z | \mathcal{F}_{s}] \ \mathbb{P}\text{-}\text{a.s.}\Big\} \\ &\quad \subseteq\Big\{ \mathbb{E}^{\mathbb{Q}}[u_s | \mathcal{F}_{t}]: u_s \in M_s, \mathbb{E}[w_t^s(\mathbb{Q} ,w)^{\mathsf {T}}u_s|\mathcal{F}_t] \\ &\phantom{\quad\subseteq\Big\{ \mathbb{E}^{\mathbb{Q}}[u_s | \mathcal {F}_{t}]: u_s \in M_s,} \geq\mathbb{E}\big[\mathop{\mathrm{ess\,inf}}_{Z \in A_s} w_t^s(\mathbb{Q},w)^{\mathsf {T}}\mathbb{E}^{\mathbb{Q}}[Z | \mathcal{F}_{s}]\big|\mathcal {F}_t\big] \ \mathbb{P}\text{-}\text{a.s.} \Big\} \\ &\quad =\Big\{ u_t \in M_t: w^{\mathsf{T}}u_t \geq\mathop{\mathrm{ess\, inf}}_{Z \in A_s} w^{\mathsf{T}}\mathbb{E}^{\mathbb{Q}}[Z | \mathcal {F}_{t}] \ \mathbb{P}\text{-}\text{a.s.}\Big\} \\ &\quad = \operatorname{cl}\bigcup_{Z \in A_s}\big(\mathbb{E}^{\mathbb {Q}}[Z | \mathcal{F}_{t}] + \varGamma_t(w)\big) \cap M_t, \end{aligned}$$

and since \(\operatorname{cl}\bigcup_{Z \in A_{s}}(\mathbb{E}^{\mathbb{Q}}[ Z| \mathcal{F}_{t}] + \varGamma_{t}(w) \cap M_{t})\) is closed, this direction is shown.

“⊇”: Consider a point \(u \in\operatorname{cl}\bigcup_{Z \in A_{s}} (\mathbb{E}^{\mathbb{Q}} [ Z| \mathcal{F}_{t}] + \varGamma_{t}(w)) \cap M_{t}\) and further assume that \(u \notin \operatorname{cl}(\mathbb{E}^{\mathbb{Q}}[-\alpha_{s}^{\min}(\mathbb {Q}^{s},w_{t}^{s}(\mathbb{Q},w))|\mathcal{F}_{t}])\). Since the latter set is closed and convex, we can separate it from {u} by some \(v \in L^{q}_{t}\), that is, let \(v \in L^{q}_{t}\) be such that

$$\begin{aligned} \mathbb{E}[v^{\mathsf{T}}u] &< \inf_{z_t \in\operatorname {cl}\mathbb{E}^\mathbb{Q}[-\alpha_s^{\min}(\mathbb{Q} ^s,w_t^s(\mathbb{Q},w))| \mathcal{F}_t]}\mathbb{E}[v^{\mathsf {T}}z_t]\\ &= \inf_{z_s \in-\alpha_s^{\min}(\mathbb{Q}^s,w_t^s(\mathbb {Q},w))} \mathbb{E}[w_t^s(\mathbb{Q},v)^{\mathsf{T}}z_s]\\ &= \mathbb{E}\Big[\mathop{\mathrm{ess\,inf}}_{z_s \in-\alpha _s^{\min}(\mathbb{Q}^s,w_t^s(\mathbb{Q},w))} w_t^s(\mathbb {Q},v)^{\mathsf{T}}z_s\Big]. \end{aligned}$$

Note that in the last equality above, we can interchange the expectation and infimum since \(-\alpha_{s}^{\min}(\mathbb {Q}^{s},w_{t}^{s}(\mathbb{Q},w))\) is decomposable. By construction,

$$\begin{aligned} \mathop{\mathrm{ess\,inf}}_{z_s \in-\alpha_s^{\min}(\mathbb {Q}^s,w_t^s(\mathbb{Q},w))} w_t^s(\mathbb{Q} ,v)^{\mathsf{T}}z_s = \begin{cases} \mathop{\mathrm{ess\,inf}}_{Z \in A_s} w_t^s(\mathbb {Q},v)^{\mathsf{T}}\mathbb{E}^{\mathbb{Q}}[Z | \mathcal{F}_{s}] & \text{on } D,\\ -\infty&\text{on } D^c, \end{cases} \end{aligned}$$

where \(D = \{\omega\in\varOmega: G_{0}(w_{t}^{s}(\mathbb{Q},v)[\omega]) = G_{0}(w_{t}^{s}(\mathbb{Q},w)[\omega])\}\). Since \(\mathbb{Q}\in\mathcal{M}^{e}\), we have \(G_{0}(w_{t}^{s}(\mathbb {Q},v)[\omega]) = G_{0}(w_{t}^{s}(\mathbb{Q},w)[\omega])\) if and only if v(ω)=λ(ω)w(ω) for some \(\lambda\in L^{0}_{t}(\mathbb{R}_{++})\) (with \(\lambda w \in L^{q}_{t}\)). So

$$\mathbb{E}\Big[\mathop{\mathrm{ess\,inf}}_{z_s \in-\alpha_s^{\min }(\mathbb{Q}^s,w_t^s(\mathbb{Q},w))} w_t^s(\mathbb{Q},v)^{\mathsf {T}}z_s\Big] > -\infty $$

if and only if

$$\begin{aligned} \mathbb{E}\Big[\mathop{\mathrm{ess\,inf}}_{z_s \in-\alpha_s^{\min }(\mathbb{Q}^s,w_t^s(\mathbb{Q},w))} w_t^s(\mathbb{Q},v)^{\mathsf {T}}z_s\Big] &=\mathbb{E}\Big[\lambda\mathop{\mathrm{ess\, inf}}_{z_s \in-\alpha_s^{\min }(\mathbb{Q}^s,w_t^s(\mathbb{Q},w))} w_t^s(\mathbb{Q},w)^{\mathsf {T}}z_s\Big]\\ &= \mathbb{E}\Big[\lambda\mathop{\mathrm{ess\,inf}}_{Z \in A_s} w^{\mathsf{T}}\mathbb{E}^{\mathbb{Q}}[Z | \mathcal{F}_{t}]\Big]. \end{aligned}$$

But this implies \(\mathbb{E}[\lambda w^{\mathsf{T}}u] < \mathbb {E}[\lambda\mathop{\mathrm{ess\,inf}}_{Z \in A_{s}} w^{\mathsf{T}} \mathbb{E}^{\mathbb{Q}}[Z |\mathcal{F}_{t}]]\), which is a contradiction to \(u \in\operatorname{cl}\bigcup_{Z \in A_{s}} (\mathbb{E}^{\mathbb{Q}}[Z | \mathcal{F}_{t}] + \varGamma_{t}(w)) \cap M_{t}\). □

Corollary A.6

Let 0≤t<sT, and \((\mathbb{Q},w) \in\mathcal{W}_{t}\) with \(\mathbb{Q}\in\mathcal {M}^{e}\). It follows that

$$\operatorname{cl}\mathbb{E}^{\mathbb{Q}}[\varGamma_{s}\big(w_t^{s}(\mathbb{Q},w)\big) | \mathcal{F}_{t}] = \varGamma_t(w). $$

Proof

This is a special case of Lemma A.5, obtained for \(M = \mathbb{R}^{d}\) and \(A_{s} = L^{p}_{+}\). □

Appendix B: On the sum of closed acceptance sets and convex upper continuity

When considering multi-portfolio time consistency for closed risk measures, we need to guarantee that the composed risk measures are closed, or else the recursive form would fail to hold. In particular, this would be true if the sum of acceptance sets are themselves closed. We demonstrate the closedness of the sum of convex acceptance sets when the associated dynamic risk measure is convex upper continuous.

Recall that a function \(F: X \to\mathcal{P}(Y;C)\) is convex upper continuous (c.u.c.) if F −1(D):={xX:F(x)∩D≠∅} is closed for any closed set \(D \in\mathcal{G}(Y;-C)\).

Proposition B.1

Let \(F: X \to\mathcal{P}(Y;C_{Y})\) and \(G: Y \to\mathcal{P}(Z;C_{Z})\). If F,G are c.u.c. and G is convex andC Y -monotone, then \(H: X \to \mathcal{P}(Z;C_{Z})\) defined by the composition H(x):=⋃ yF(x) G(y) for any xX is c.u.c.

Proof

For any D∈2Z, we have

$$\begin{aligned} H^{-1}(D) &= \left\{x \in X: H(x) \cap D \neq\emptyset\right\} = \bigg\{ x \in X: \bigcup_{y \in F(x)} G(y) \cap D \neq\emptyset\bigg\} \\ &= \left\{x \in X: \exists y \in F(x), G(y) \cap D \neq\emptyset \right\} =\{ x \in X: F(x) \cap G^{-1}(D) \neq\emptyset\}\\ &= F^{-1}\big(G^{-1}(D)\big). \end{aligned}$$

Additionally, if \(D \in\mathcal{G}(Z;-C_{Z})\), then G −1(D) is closed; if x,yG −1(D) and λ∈[0,1], then G(λx+(1−λ)y)∩D≠∅; and if x,yY are such that xyC Y with xG −1(D), then yG −1(D). This implies that \(G^{-1}(D) \in\mathcal{G}(Y,-C_{Y})\), and thus F −1(G −1(D)) is closed for any \(D \in\mathcal{G}(Z;-C_{Z})\). □

Lemma B.2

Let M t (M s ) be the set of eligible portfolios at time t (s) (a closed linear subspace of \(L^{p}_{t}\) \((L^{p}_{s})\)). Let R t,s be a c.u.c. convex stepped risk measure from t to s, and R s a c.u.c. risk measure at time s. Then A t,s +A s is closed.

Proof

By Lemma 3.6(i) in [17], \(A_{t,s} + A_{s} = \{X \in L^{p}: 0 \in\bigcup_{Z \in R_{s}(X)} R_{t,s}(-Z)\}\). Indeed,

$$\begin{aligned} X\in A_{t,s} + A_{s} &\Longleftrightarrow-R_{s}(X)\cap A_t\neq \emptyset \\ &\Longleftrightarrow\exists Z\in R_{s}(X) \quad\mbox{with } -Z\in A_t \ (\mbox{i.e., } 0\in R_t(-Z) =R_{t,s}(-Z))\\ &\Longleftrightarrow0 \in\bigcup_{Z \in R_{s}(X)}R_{t,s}(-Z). \end{aligned}$$

Let \(\tilde{R}_{t}(X) := \bigcup_{Z \in R_{s}(X)} R_{t,s}(-Z)\); then \(A_{t,s} + A_{s} = \tilde{R}_{t}^{-1}(M_{t,-})\). By Proposition B.1, \(\tilde {R}_{t}\) is c.u.c., and thus \(\tilde{R}_{t}^{-1}(M_{t,-})\) is closed. □

Remark B.3

Let R t be a conditional risk measure at time t, and \(R_{t,s} := R_{t}|_{M_{s}}\) the stepped risk measure from t to s associated with R t . If R t is c.u.c., then trivially R t,s is c.u.c.

When applying Lemma 3.1 to the proof of Theorem 3.2 and Corollary 3.3, we need not only the sum of closed convex acceptance sets to be closed, but also to be a (closed) convex acceptance set itself. This is given in the following lemma.

Lemma B.4

Let \((A_{t})_{t=0}^{T}\) be a sequence of closed convex normalized acceptance sets. Assume that A t,t+1+A t+1A t . Then A t,t+1+A t+1 is a convex acceptance set at time t. Furthermore, if \((A_{t})_{t=0}^{T}\) is c.u.c., then A t,t+1+A t+1 is closed.

Proof

Let us check the properties of acceptance sets (see Definition 2.2).

  1. (1)

    A t,t+1+A t+1L p trivially.

  2. (2)

    M t ∩(A t,t+1+A t+1)⊇M t M t+1A t ≠∅ since 0∈A t+1 (since A t+1 is closed and normalized), M t A t ≠∅, and M t M t+1=M t .

  3. (3)

    M t ∩(L p∖{A t,t+1+A t+1})⊇M t ∩(L pA t )≠∅ by A t,t+1+A t+1A t .

  4. (4)

    \(A_{t,t+1} + A_{t+1} + L^{p}_{+} \subseteq A_{t,t+1} + A_{t+1}\) trivially.

Moreover, A t,t+1+A t+1 is convex since both A t,t+1 and A t+1 are convex, and A t,t+1+A t+1 is closed by Lemma B.2 if \((A_{t})_{t=0}^{T}\) is c.u.c. □

We finish this section by considering a class of risk measures that are point plus cone and show that these risk measures will be c.u.c. under p=+∞ and the weak* topology.

Proposition B.5

Consider the full eligible space \(M_{t} = L^{\infty}_{t}\) and let p=+∞. Let \(R_{t}(X) := \rho_{t}(X) + L^{\infty}_{t,+}\) for some vector ρ t of scalar conditional risk measures, that is, ρ t (X):=((ρ t )1(X 1),…,(ρ t ) d (X d ))T. If ρ t is (componentwise) lower semicontinuous and convex, then R t is c.u.c.

Proof

Recall from the scalar literature that \(\rho_{t}(X) \in L^{\infty}_{t}\) for any XL . Consider any set \(D \in\mathcal{G}(L^{\infty }_{t};L^{\infty}_{t,-})\). It follows that

$$\begin{aligned} R_t^{-1}(D) &= \{X \in L^{\infty}: R_t(X) \cap D \neq\emptyset\}\\ &= \{X \in L^{\infty}: \exists\hat{d} \in D, \rho_t(X) \preceq \hat{d}\}\\ &= \{X \in L^{\infty}: \exists\hat{d} \in D, \rho_t(X) = \hat {d} \ \mathbb{P}\text{-}\text{a.s.}\}\\ &= \{X \in L^{\infty}: \rho_t(X) \in D\} = \rho_t^{-1}(D). \end{aligned}$$

Therefore, we wish to show that \(\rho_{t}^{-1}(D)\) is weak* closed. From convexity of ρ t it immediately follows that \(\rho_{t}^{-1}(D)\) is convex; therefore, \(\rho_{t}^{-1}(D)\) is weak* closed if and only if \(\rho _{t}^{-1}(D) \cap\{Z \in L^{\infty}: \|Z\|_{\infty} \leq k\}\) is closed in probability for every k, by [34, Proposition 5.5.1]. Pick any k≥0 and consider

$$(Z_n)_{n \in\mathbb{N}} \subseteq\rho_t^{-1}(D) \cap\{Z \in L^{\infty}: \|Z\| _{\infty} \leq k\} $$

with \(Z_{n} \to\bar{Z}\) in probability (and thus \(\bar{Z} \in\{Z \in L^{\infty}: \|Z\|_{\infty} \leq k\}\)). Note that convergence in probability implies that there exists a subsequence that converges almost surely; we denote this subsequence by \((Z_{n_{m}})_{m \in\mathbb {N}} \to \bar{Z}\). For any sequence of random vectors (Y n )⊆L , define lim inf n→∞ ρ t (Y n )=lim n→∞inf mn ρ t (Y m ), where

$$\inf_{m \geq n} \rho_t(Y_m) = \left( \begin{array}{c} \inf_{m \geq n} (\rho_t)_1((Y_m)_1) \\ \vdots\\ \inf _{m \geq n} (\rho_t)_d((Y_m)_d) \end{array} \right). $$

Since D is a lower set and \(\inf_{\hat{m} \geq m} \rho _{t}(Z_{n_{\hat {m}}}) \preceq \rho_{t}(Z_{n_{m}})\) (and \(\rho_{t}(Z_{n_{m}}) \in D\)) for any \(m \in \mathbb{N}\), it follows that \(\inf_{\hat{m} \geq m} \rho _{t}(Z_{n_{\hat{m}}}) \in D\) for any \(m \in\mathbb{N}\). Note that \(\| \inf_{\hat {m} \geq m} \rho_{t}(Z_{n_{\hat{m}}})\|_{\infty} \leq\max(\|\rho _{t}(0)+k\| _{\infty},\|\rho_{t}(0)-k\|_{\infty}) =: \hat{k}\) due to \(\| Z_{n_{\hat {m}}}\|_{\infty} \leq k\) for every \(\hat{m} \in\mathbb{N}\). Since \(D \cap \{u \in L^{\infty}_{t}: \|u\|_{\infty} \leq\hat{k}\}\) is closed in probability (by [34, Proposition 5.5.1]), it must contain all almost sure limit points; therefore, we have that \(\liminf_{m \to \infty } \rho_{t}(Z_{n_{m}}) \in D \cap\{u \in L^{\infty}_{t}: \|u\|_{\infty} \leq\hat{k}\}\). Finally, from componentwise lower semicontinuity we have \(\liminf_{m \to\infty} \rho_{t}(Z_{n_{m}}) \succeq\rho_{t}(Z)\); because D is a lower set, it hence follows that \(\rho_{t}(\bar{Z}) \in D\), that is, \(\bar{Z} \in\rho_{t}^{-1}(D)\). □

Appendix C: Stepped risk measures

In this section, we consider the dual representation of closed convex and coherent stepped risk measures \(R_{t,s}: M_{s} \to\mathcal {P}(M_{t};M_{t,+})\). This is used in Sects. 3 and 4, as the stepped penalty functions and stepped sets of dual variables play a role when discussing equivalent characterizations of multi-portfolio time consistency. For the dual representation, we use set-valued duality defined in [25] analogously as for conditional risk measures in Sect. 4 of [17].

Given a risk measure \(R_{t}: L^{p} \to\mathcal{P}(M_{t};M_{t,+})\), a stepped risk measure is the restriction of R t to M s , that is, \(R_{t,s}=R_{t}|_{M_{s}}\). The primal representation can immediately be seen, that is, R t,s (X):={uM t :X+uA t,s } for XM s . Therefore, if R t is closed convex (coherent), then R t,s is closed convex (coherent). Furthermore, if R t is \(L^{p}_{+}\)-monotone, then R t,s is M s,+-monotone.

Lemma C.1

Let R t be a closed convex risk measure. The set of dual variables for \(R_{t,s}: M_{s} \to\mathcal{P}(M_{t};M_{t,+})\) with t<s is given by

$$\mathcal{W}_{t,s} = \big\{ (\mathbb{Q},w) \in\mathcal{M} \times(M_{t,+}^+ \backslash M_t^{\perp}): w_t^{s}(\mathbb{Q},w) \in M_{s,+}^+, \mathbb {Q}= \mathbb{P}|_{\mathcal{F}_{t}}\big\} . $$

Proof

By the logic of Proposition 4.4 in [17], the set of (classical) stepped dual variables is given by \(\{(Y,v): Y \in M_{s,+}^{+}, v \in(\mathbb{E}[Y | \mathcal{F}_{t}] + M_{t}^{\perp}) \backslash M_{t}^{\perp}\}\). Then it remains to show that for any dual pair (Y,v), there is a \((\mathbb{Q},w) \in\mathcal{W}_{t,s}\) with \(\tilde {F}_{(Y,v)}^{t}[X] = F_{(\mathbb{Q},w)}^{t}[X]\) for any XM s and vice versa, where \(\tilde{F}_{(Y,v)}^{t}[X] := \{u \in M_{t}: \mathbb {E}[X^{\mathsf{T}}Y] \leq\mathbb{E}[v^{\mathsf{T}}u]\}\).

(1) Let \((\mathbb{Q},w) \in\mathcal{W}_{t,s}\). Then we show that there exists a dual pair

$$(Y,v) \in\{(Y,v): Y \in M_{s,+}^+, v \in(\mathbb{E}[Y | \mathcal {F}_{t}] + M_t^{\perp }) \backslash M_t^{\perp}\} $$

with \(\tilde{F}_{(Y,v)}^{t}[X] = F_{(\mathbb{Q},w)}^{t}[X]\) for any XM s . Let \(Y = w_{t}^{s}(\mathbb{Q},w) \in M_{s,+}^{+}\) (by Remark C.2 and Lemma A.1(i)); thus,

$$\mathbb{E}[X^{\mathsf{T}}Y] = \mathbb{E}[w_t^{s}(\mathbb{Q},w)^{\mathsf{T}}X] = \mathbb{E}[w^{\mathsf{T}}\mathbb{E}^\mathbb{Q}[X|\mathcal{F}_t]] $$

and \(\mathbb{E}[Y | \mathcal{F}_{t}]=w\). From \(w \in M_{t,+}^{+} \backslash M_{t}^{\perp }\), we can rewrite \(w = w_{M_{t,+}^{+}} + w_{M_{t}^{\perp}}\). Thus, \(v = w_{M_{t,+}^{+}} = w - w_{M_{t}^{\perp}} \in\mathbb{E}[Y|\mathcal {F}_{t}] + M_{t}^{\perp }\). Finally, \(w \notin M_{t}^{\perp}\) implies \(v \notin M_{t}^{\perp}\), and \(\mathbb{E}[w^{\mathsf{T}}u] = \mathbb{E}[v^{\mathsf{T}}u]\) for every uM t since \(w \in v + M_{t}^{\perp}\).

(2) Let \(Y \in M_{s,+}^{+}\) and \(v \in(\mathbb{E}[Y|\mathcal{F}_{t}] + M_{t}^{\perp}) \backslash M_{t}^{\perp}\). We want to show that there exists a \((\mathbb{Q}^{t},w) \in\mathcal {W}_{t,s}\) such that \(\tilde{F}_{(Y,v)}^{t}[X] = F_{(\mathbb{Q},w)}^{t}[X]\) for any XM s . First, we let \(w \in\mathbb{E} [(Y + M_{s}^{\perp}) \cap L^{q}_{s,+}|\mathcal{F}_{t}]\) (which is nonempty), that is, \(w = \mathbb{E}[Y + m^{\perp}|\mathcal{F}_{t}]\) for some \(m^{\perp } \in M_{s}^{\perp }\) and \(Y + m^{\perp} \in L^{q}_{s,+}\). Then it can easily be seen that \(w \in v + M_{t}^{\perp}\) for \(v \in(\mathbb{E}[Y|\mathcal{F}_{t}] + M_{t}^{\perp}) \backslash M_{t}^{\perp} \subseteq M_{t,+}^{+}\). Thus, \(w \in M_{t,+}^{+} + M_{t}^{\perp}\), and with \(v \notin M_{t}^{\perp}\), this implies \(w \in M_{t,+}^{+} \backslash M_{t}^{\perp}\). From \(w \in v + M_{t}^{\perp}\) it follows that \(\mathbb{E}[w^{\mathsf{T}}u] = \mathbb {E}[v^{\mathsf{T}}u]\) for every uM t .

Additionally, choose \(\mathbb{Q}\in\mathcal{M} \) such that \(\frac {d\mathbb{Q}_{i}}{d\mathbb{P}}= \bar{\xi }_{0,s}(\mathbb{Q}_{i})\), where

$$\bar{\xi}_{r,s}(\mathbb{Q}_i)[\omega] = \begin{cases}\frac{\mathbb{E}[Y_i + m_i^{\perp} | \mathcal {F}_{s}](\omega)}{\mathbb{E}[Y_i + m_i^{\perp} | \mathcal {F}_{r}](\omega)} &\text{if } \mathbb{E}[Y_i + m_i^{\perp } | \mathcal{F}_{r}](\omega) > 0\\ 1 &\text{else} \end{cases} $$

for any 0≤rs and almost every ωΩ. Define the measure \(\mathbb{Q}^{t}\in\mathcal{M}\) by its density \(\frac {d\mathbb{Q}^{t}_{i}}{d\mathbb{P}} = \bar{\xi}_{t,s}(\mathbb{Q}_{i})\). Then \(w_{t}^{s}(\mathbb{Q}^{t},w) = w_{t}^{s}(\mathbb{Q},w) = Y + m^{\perp} \in M_{s,+}^{+} + M_{s}^{\perp} \subseteq M_{s,+}^{+}\). Therefore, \(\mathbb{E}[w^{\mathsf{T}} \mathbb{E}[X|\mathcal{F}_{t}]] = \mathbb{E}[w_{t}^{s}(\mathbb{Q}^{t},w)^{\mathsf{T}}X] = \mathbb{E}[Y^{\mathsf{T}}X]\) for every XM s . □

Remark C.2

For any choice of eligible portfolios M t , it follows that \(\mathcal{W} _{t,s} \supseteq\mathcal{W}_{t}\) for any t<s.

Remark C.3

If we consider the case where \(M_{t} = L^{p}_{t}\) for all times t, then an inspection of the proof of Lemma 4.5 from [17] shows that \(\mathcal{W}_{t,s} = \mathcal{W}_{t}\).

The next lemma gives a dual representation for closed convex stepped risk measures. In particular, it demonstrates that the minimal stepped penalty function as defined in (3.1) can be used in a dual representation to define a closed convex stepped risk measure.

Lemma C.4

The dual representation for any closed convex stepped risk measure \(R_{t,s}: M_{s} \to\mathcal{G}(M_{t};M_{t,+})\) with t<s is given by

$$R_{t,s}(X) = \bigcap_{(\mathbb{Q},w) \in\mathcal{W}_{t,s}} \Big(-\beta_{t,s}^{\min}(\mathbb{Q} ,w) + \big(\mathbb{E}^{\mathbb{Q}}[-X | \mathcal{F}_{t}] + G_t(w)\big) \cap M_t\Big) $$

for any XM s where

$$-\beta_{t,s}^{\min}(\mathbb{Q},w) = \operatorname{cl}\bigcup_{X \in A_{t,s}} \big(\mathbb{E}^{\mathbb{Q}}[X | \mathcal{F}_{t}] + G_t(w)\big) \cap M_t. $$

Proof

This is an adaptation of Theorem 2.3 to stepped risk measures, using Lemma C.1. □

We use the above results to give a dual representation for closed coherent stepped risk measures.

Corollary C.5

The dual representation for any closed coherent stepped risk measure \(R_{t,s}: M_{s} \to\mathcal{G}(M_{t};M_{t,+})\) with t<s is given by

$$R_{t,s}(X) = \bigcap_{(\mathbb{Q},w) \in\mathcal{W}_{t,s}^{\max }}\big(\mathbb{E}^{\mathbb{Q}}[-X | \mathcal{F}_{t}] + G_t(w)\big) \cap M_t $$

for any XM s , where

$$\mathcal{W}_{t,s}^{\max} = \{(\mathbb{Q},w) \in\mathcal{W}_{t,s}: w_t^{s}(\mathbb{Q},w) \in A_{t,s}^+\}. $$

Proof

Note that

$$-\beta_{t,s}^{\min}(\mathbb{Q},w) = \operatorname{cl}\bigcup_{X \in A_{t,s}} (\mathbb{E} ^\mathbb{Q}[X| \mathcal{F}_t] + G_t(w)) \cap M_t = G_t(w) \cap M_t $$

if and only if for every XA t,s , we have

$$\mathbb{E}\big[w^{\mathsf{T}}\mathbb{E}^{\mathbb{Q}}[X | \mathcal {F}_{t}]\big] = \mathbb{E}\big[w_t^{s}(\mathbb{Q},w)^{\mathsf {T}}X\big] \geq0, $$

that is, \(w_{t}^{s}(\mathbb{Q},w) \in A_{t,s}^{+}\). Thus, for an M s,+-monotone closed coherent stepped risk measure R t,s with 0≤t<sT, it holds that for any \((\mathbb {Q},w) \in \mathcal{W}_{t,s}\),

$$-\beta_{t,s}^{\min}(\mathbb{Q},w) = G_t(w) \cap M_t \quad\Longleftrightarrow\quad w_t^{s}(\mathbb{Q},w) \in A_{t,s}^+. $$

An application of Lemma C.1 provides the desired result. □

Finally, we use the above duality results to extend Corollary 2.4 to stepped risk measures.

Corollary C.6

The dual representation for any closed conditionally convex stepped risk measure \(R_{t,s}: M_{s} \to\mathcal{G}(M_{t};M_{t,+})\) with t<s is given by

$$R_{t,s}(X) = \bigcap_{(\mathbb{Q},w) \in\mathcal{W}_{t,s}} \Big(-\alpha_{t,s}^{\min }(\mathbb{Q},w) + \big(\mathbb{E}^{\mathbb{Q}}[-X | \mathcal {F}_{t}] + \varGamma_t(w)\big)\cap M_t\Big) $$

for any XM s , where

$$-\alpha_{t,s}^{\min}(\mathbb{Q},w) = \operatorname{cl}\bigcup_{X \in A_{t,s}} \big(\mathbb{E}^{\mathbb{Q}}[X | \mathcal{F}_{t}] + \varGamma_t(w)\big) \cap M_t. $$

If R t,s is additionally conditionally coherent, then

$$R_{t,s}(X) = \bigcap_{(\mathbb{Q},w) \in\mathcal{W}_{t,s}^{\max}} \big(\mathbb{E}^{\mathbb{Q}}[-X | \mathcal{F}_{t}] + \varGamma_t(w)\big) \cap M_t. $$

Proof

This is an adaptation of Corollary 2.4 to stepped risk measures, using the results of Lemma C.4 and Corollary C.5. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feinstein, Z., Rudloff, B. Multi-portfolio time consistency for set-valued convex and coherent risk measures. Finance Stoch 19, 67–107 (2015). https://doi.org/10.1007/s00780-014-0247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-014-0247-6

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation