Skip to main content
Log in

Repair of segmental bone defects in rabbit tibia promoted by a complex of β-tricalcium phosphate and hepatocyte growth factor

  • Original Article
  • Published:
Journal of Orthopaedic Science

Abstract

Background

Segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on bone tissue engineering. Clinical studies are ongoing to address application of hepatocyte growth factor (HGF) for treatment of some diseases; however, the use of HGF in bone tissue engineering has not been addressed. This study was performed to evaluate the effect of HGF in a complex of β-tricalcium phosphate (β-TCP) and collagen in repairing segmental bone defects.

Methods

Segmental bone defects 5 mm long were created in the middle of the tibial shafts of rabbits. The defect was stabilized with external fixators and implanted with a complex of β-TCP granules and collagen, with or without 100 μg recombinant human HGF. Biweekly, bone regeneration and β-TCP resorption were assessed radiographically and histologically. At 4 and 8 weeks, bone regeneration was evaluated by use of micro-computed tomography and mechanical tests.

Results

Compared with the bone tissue treated with β-TCP and collagen, mineralization, angiogenesis, new bone formation, and absorption of β-TCP were promoted 4 weeks postoperatively by treatment with HGF in the β-TCP and collagen group. These changes were associated with promoting biomechanical regeneration. By 8 weeks, the formation of bone marrow in newly generated bone and absorption of the β-TCP granules were completed in a shorter period by combining HGF with β-TCP and collagen, compared with tissues without HGF.

Conclusions

The combined application of HGF in a β-TCP and collagen matrix promoted histological bone healing and augmented mechanical strength of the healing bone, particularly in the early stages. The combined use of HGF and β-TCP for treatment of bone defects made a substantial difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cockin J. Autologous bone grafting; complications at the donor site. J Bone Joint Surg Br. 1971;53:153.

    Google Scholar 

  2. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  PubMed  CAS  Google Scholar 

  3. Petite H, Viateau V, Bensaïd W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G. Tissue engineered bone regeneration. Nat Biotechnol. 2000;18:959–63.

    Article  PubMed  CAS  Google Scholar 

  4. Einhorn TA, Majeska RJ, Mohaideen A, Kagel EM, Bouxsein ML, Turek TJ, Wozney JM. A single percutaneous injection of recombinant human bone morphogenetic protein-2 accelerates fracture repair. J Bone Joint Surg Am. 2003;85:1425–35.

    PubMed  Google Scholar 

  5. Nakamura Y, Tensho K, Nakaya H, Nawata M, Okabe T, Wakitani S. Low dose fibroblast growth factor-2 (FGF-2) enhances bone morphogenetic protein-2 (BMP-2)-induced ectopic bone formation in mice. Bone. 2005;36:399–407.

    Article  PubMed  CAS  Google Scholar 

  6. Hollinger JO, Onikepe AO, Mackrell J, Einhorn T, Bradica G, Lynch S, Hart CE. Accelerated fracture healing in the geriatric, osteoporotic rat with recombinant human platelet-derived growth factor-BB and an injectable beta-tricalcium phosphate/collagen matrix. J Ortho Res. 2008;26:83–90.

    Article  CAS  Google Scholar 

  7. Samee M, Kasugai S, Kondo H, Ohya K, Shimokawa H, Kuroda S. Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation. J Pharmacol Sci. 2008;108:18–31.

    Article  PubMed  CAS  Google Scholar 

  8. Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, Tashiro K, Shimizu S. Molecular cloning and expression of human hepatocyte growth factor. Nature. 1989;342:440–3.

    Article  PubMed  CAS  Google Scholar 

  9. Nakamura T, Sakai K, Nakamura T, Matsumoto K. Hepatocyte growth factor twenty years on: much more than a growth factor. J Gastroenterol Hepatol. 2011;26:188–202.

    Article  PubMed  CAS  Google Scholar 

  10. Shigematsu H, Yasuda K, Iwai T, Sasajima T, Ishimaru S, Ohashi Y, Yamagushi T, Ogihara T, Morishita R. Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia. Gene Ther. 2010;17(9):1152–61.

    Article  PubMed  CAS  Google Scholar 

  11. Nakase J, Kitaoka K, Matsumoto K, Tomita K. Facilitated tendon-bone healing by local delivery of recombinant hepatocyte growth factor in rabbits. Arthroscopy. 2010;26:84–90.

    Article  PubMed  Google Scholar 

  12. Matsubara H, Tsuchiya H, Watanabe K, Takeuchi A, Tomita K. Percutaneous nonviral delivery of hepatocyte growth factor in an osteotomy gap promotes bone repair in rabbits: a preliminary study. Clin Orthop Relat Res. 2008;466:2962–72.

    Article  PubMed  Google Scholar 

  13. Imai Y, Terai H, Nomura-Furuwatari C, Mizuno S, Matsumoto K, Nakamura T, Takaoka K. Hepatocyte growth factor contributes to fracture repair by upregulating the expression of BMP receptors. J Bone Miner Res. 2005;20:1723–30.

    Article  PubMed  CAS  Google Scholar 

  14. Bauer TW, Smith ST. Bioactive materials in orthopedic surgery: overview and regulatory considerations. Clin Orthop Relat Res. 2002;395:11–22.

    Article  PubMed  Google Scholar 

  15. Kondo N, Ogose A, Tokunaga K, Ito T, Arai K, Kudo N, Inoue H, Irie H, Endo N. Bone formation and resorption of highly purified β-tricalcium phosphate in the rat femoral condyle. Biomaterials. 2005;26:5600–8.

    Article  PubMed  CAS  Google Scholar 

  16. Matsumoto G, Omi Y, Kubota E, Ozono S, Tsuzuki H, Kinoshita Y, Yamamoto M, Tabata Y. Enhanced regeneration of critical bone defects using a biodegradable gelatin sponge and β-tricalcium phosphate with bone morphogenetic protein-2. J Biomater Appl. 2009;24:327–42.

    Article  PubMed  CAS  Google Scholar 

  17. Komaki H, Tanaka T, Chazono M, Kikuchi T. Repair of segmental bone defects in rabbit tibiae using a complex of β-tricalcium phosphate, type I collagen, and fibroblast growth factor-2. Biomaterials. 2006;27:5118–26.

    Article  PubMed  CAS  Google Scholar 

  18. Matsumoto K, Nakamura T. Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int. 2001;59:2023–38.

    PubMed  CAS  Google Scholar 

  19. Sato T, Hakeda Y, Yamaguchi Y, Mano H, Tezuka K, Matsumoto K, Nakamura T, Mori Y, Yoshizawa K, Sumitani K, et al. Hepatocyte growth factor is involved in formation of osteoclast-like cells mediated by clonal stromal cells (MC3T3-G2/PA6). J Cell Physiol. 1995;164:197–204.

    Article  PubMed  CAS  Google Scholar 

  20. D’lppolito G, Schiller PC, Perez-stable C, Balkan W, Roos BA, Howard GA. Cooperative actions of hepatocyte growth factor and 1,25-dihydroxyvitamin D3 in osteoblastic differentiation of human vertebral bone marrow stromal cells. Bone. 2002;31:269–75.

    Article  Google Scholar 

  21. Hossain M, Irwin R, Baumann MJ, McCabe LR. Hepatocyte growth factor (HGF) adsorption kinetics and enhancement of osteoblast differentiation on hydroxyapatite surfaces. Biomaterials. 2005;26:2595–602.

    Article  PubMed  CAS  Google Scholar 

  22. Mastrogiacomo M, Muraglia A, Komlev V, Peyrin F, Rustichelli F, Crovace A, Cancedda R. Tissue engineering of bone: search for a better scaffold. Orthod Craniofac Res. 2005;8:277–84.

    Article  PubMed  CAS  Google Scholar 

  23. Sengupta S, Gherardi E, Sellers LA, Wood JM, Sasisekharan R, Fan TP. Hepatocyte growth factor/scatter factor can induce angiogenesis independently of vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2003;23:69–75.

    Article  PubMed  CAS  Google Scholar 

  24. Grano M, Galimi F, Zambonin G, Colucci S, Cottone E, Zallone AZ, Comoglio PM. Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro. Proc Natl Acad Sci USA. 1996;93:7644–8.

    Article  PubMed  CAS  Google Scholar 

  25. Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater. 2008;15:100–14.

    PubMed  CAS  Google Scholar 

  26. Huh CG, Factor VM, Sánchez A, Uchida K, Conner EA, Thorgeirsson SS. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci USA. 2004;101:4477–82.

    Article  PubMed  CAS  Google Scholar 

  27. Dai C, Saleem MA, Holzman LB, Mathieson P, Liu Y. Hepatocyte growth factor signaling ameliorates podocyte injury and proteinuria. Kidney Int. 2010;77:962–73.

    Article  PubMed  CAS  Google Scholar 

  28. Chazono M, Tanaka T, Komaki H, Fujii K. Bone formation and bioresorption after implantation of injectable beta-tricalcium phosphate granules–hyaluronate complex in rabbit bone defects. J Biomed Mater Res A. 2004;70:542–9.

    Article  PubMed  Google Scholar 

  29. Tanaka T, Saito M, Chazono M, Kumagae Y, Kikuchi T, Kitasato S, Marumo K. Effects of alendronate on bone formation and osteoclastic resorption after implantation of beta-tricalcium phosphate. J Biomed Mater Res A. 2010;93:469–74.

    PubMed  Google Scholar 

  30. Schuppan D, Schmid M, Somasundaram R, Ackermann R, Ruehl M, Nakamura T, Riecken EO. Collagens in the liver extracellular matrix bind hepatocyte growth factor. Gastroenterology. 1998;114:139–52.

    Article  PubMed  CAS  Google Scholar 

  31. Okura Y, Arimoto H, Tanuma N, Matsumoto K, Nakamura T, Yamashima T, Miyazawa T, Matsumoto Y. Analysis of neurotrophic effects of hepatocyte growth factor in the adult hypoglossal nerve axotomy model. Eur J Neurosci. 1999;11:4139–44.

    Article  PubMed  CAS  Google Scholar 

  32. Tönges L, Ostendorf T, Lamballe F, Genestine M, Dono R, Koch JC, Bähr M, Maina F, Lingor P. Hepatocyte growth factor protects retinal ganglion cells by increasing neuronal survival and axonal regeneration in vitro and in vivo. J Neurochem. 2011;117:892–903.

    Article  PubMed  Google Scholar 

  33. Ishigaki A, Aoki M, Nagai M, Warita H, Kato S, Kato M, Nakamura T, Funakoshi H, Itoyama Y. Intrathecal delivery of hepatocyte growth factor from amyotrophic lateral sclerosis onset suppresses disease progression in rat amyotrophic lateral sclerosis model. J Neuropathol Exp Neurol. 2007;66:1037–44.

    Article  PubMed  CAS  Google Scholar 

  34. Ueshima K, Kitaoka K, Nakase J, Xu Q, Matsumoto K, Tsuchiya H. Promotion of rabbit ligament healing by local delivery of hepatocyte growth factor. J Orthop Sci. 2011;16:451–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors did not receive and will not receive any benefits or funding from any commercial party related directly or indirectly to the subject of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Goshima.

About this article

Cite this article

Goshima, K., Nakase, J., Xu, Q. et al. Repair of segmental bone defects in rabbit tibia promoted by a complex of β-tricalcium phosphate and hepatocyte growth factor. J Orthop Sci 17, 639–648 (2012). https://doi.org/10.1007/s00776-012-0262-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00776-012-0262-4

Keywords

Navigation