Skip to main content

Advertisement

Log in

Tissue-engineered bone constructed in a bioreactor for repairing critical-sized bone defects in sheep

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Repair of bone defects, particularly critical-sized bone defects, is a considerable challenge in orthopaedics. Tissue-engineered bones provide an effective approach. However, previous studies mainly focused on the repair of bone defects in small animals. For better clinical application, repairing critical-sized bone defects in large animals must be studied. This study investigated the effect of a tissue-engineered bone for repairing critical-sized bone defect in sheep.

Methods

A tissue-engineered bone was constructed by culturing bone marrow mesenchymal-stem-cell-derived osteoblast cells seeded in a porous β-tricalcium phosphate ceramic (β-TCP) scaffold in a perfusion bioreactor. A critical-sized bone defect in sheep was repaired with the tissue-engineered bone. At the eighth and 16th week after the implantation of the tissue-engineered bone, X-ray examination and histological analysis were performed to evaluate the defect. The bone defect with only the β-TCP scaffold served as the control.

Result

X-ray showed that the bone defect was successfully repaired 16 weeks after implantation of the tissue-engineered bone; histological sections showed that a sufficient volume of new bones formed in β-TCP 16 weeks after implantation. Eight and 16 weeks after implantation, the volume of new bones that formed in the tissue-engineered bone group was more than that in the β-TCP scaffold group (P < 0.05).

Conclusion

Tissue-engineered bone improved osteogenesis in vivo and enhanced the ability to repair critical-sized bone defects in large animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hollinger JO, Kleinschmidt JC (1990) The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg 1:60–68

    Article  PubMed  CAS  Google Scholar 

  2. Liu Y, Wu G, de Groot K (2010) Biomimetic coatings for bone tissue engineering of critical-sized defects. J R Soc Interface 7:S631–647

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Leniz P, Ripalda P, Forriol F (2004) The incorporation of different sorts of cancellous bone graft and the reaction of the host bone. A histomorphometric study in sheep. Int Orthop 28:2–6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Liu T, Wu G, Wismeijer D, Gu Z, Liu Y (2013) Deproteinized bovine bone functionalized with the slow delivery of BMP-2 for the repair of critical-sized bone defects in sheep. Bone 56:110–118

    Article  PubMed  CAS  Google Scholar 

  5. Kirker-Head C, Karageorgiou V, Hofmann S, Fajardo R, Betz O, Merkle HP, Hilbe M, von Rechenberg B, McCool J, Abrahamsen L, Nazarian A, Cory E, Curtis M, Kaplan D, Meinel L (2007) BMP-silk composite matrices heal critically sized femoral defects. Bone 41:247–255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, Guldberg RE (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32:65–74

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL (2006) Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27:6064–6082

    Article  PubMed  CAS  Google Scholar 

  8. van der Pol U, Mathieu L, Zeiter S, Bourban PE, Zambelli PY, Pearce SG, Bouré LP, Pioletti DP (2010) Augmentation of bone defect healing using a new biocomposite scaffold:An in vivo study in sheep. Acta Biomater 6:3755–3762

    Article  PubMed  Google Scholar 

  9. Uebersax L, Apfel T, Nuss KM, Vogt R, Kim HY, Meinel L, Kaplan DL, Auer JA, Merkle HP, von Rechenberg B (2013) Biocompatibility and osteoconduction of macroporous silk fibroin implants in cortical defects in sheep. Eur J Pharm Biopharm 85:107–118

    Article  PubMed  CAS  Google Scholar 

  10. Sarkar MR, Augat P, Shefelbine SJ, Schorlemmer S, Huber-Lang M, Claes L, Kinzl L, Ignatius A (2006) Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold. Biomaterials 27:1817–1823

    Article  PubMed  CAS  Google Scholar 

  11. Gao TJ, Lindholm TS, Kommonen B, Ragni P, Paronzini A, Lindholm TC (1995) Microscopic evaluation of boneimplant contact between hydroxyapatite, bioactive glass and tricalcium phosphate implanted in sheep diaphyseal defects. Biomaterials 16:1175–1179

    Article  PubMed  CAS  Google Scholar 

  12. Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1997) Bone formation by threedimensional stem osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 36:17–28

    Article  PubMed  CAS  Google Scholar 

  13. Bancroft GN, Sikavitsas VI, van den Dolder J, Sheffield TL, Ambrose CG, Jansen JA, Mikos AG (2002) Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci U S A 99:12600–12605

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Cartmell SH, Porter BD, García AJ, Guldberg RE (2003) Effects of medium perfusion rate on cell-seeded threedimensional bone constructs in vitro. Tissue Eng 9:1197–1203

    Article  PubMed  CAS  Google Scholar 

  15. Glowacki J, Mizuno S, Greenberger JS (1998) Perfusion enhances functions of bone marrow stem cells in threedimensional culture. Cell Transplant 7:319–326

    Article  PubMed  CAS  Google Scholar 

  16. Goldstein AS, Juarez TM, Helmke CD, Gustin MC, Mikos AG (2001) Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22:1279–1288

    Article  PubMed  CAS  Google Scholar 

  17. Xie Y, Hardouin P, Zhu Z, Tang T, Dai K, Lu J (2006) Three-dimensional flow perfusion culture system for stem cell proliferation inside the critical-size b-tricalcium phosphate scaffold. Tissue Eng 12:3535–3543

    Article  PubMed  CAS  Google Scholar 

  18. Li D, Tang T, Lu J, Dai K (2009) Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor. Tissue Eng Part A 15:2773–2783

    Article  PubMed  CAS  Google Scholar 

  19. Diab T, Pritchard EM, Uhrig BA, Boerckel JD, Kaplan DL, Guldberg RE (2012) A silk hydrogel-based delivery system of bone morphogenetic protein for the treatment of large bone defects. J Mech Behav Biomed Mater 11:123–131

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Yu H, VandeVord PJ, Mao L, Matthew HW, Wooley PH, Yang SY (2009) Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials 30:508–517

    Article  PubMed  CAS  Google Scholar 

  21. Zhou J, Lin H, Fang T, Li X, Dai W, Uemura T, Dong J (2010) The repair of large segmental bone defects in the rabbit with vascularized tissue engineered bone. Biomaterials 31:1171–1179

    Article  PubMed  CAS  Google Scholar 

  22. Vukicevic S, Oppermann H, Verbanac D, Jankolija M, Popek I, Curak J, Brkljacic J, Pauk M, Erjavec I, Francetic I, Dumic-Cule I, Jelic M, Durdevic D, Vlahovic T, Novak R, Kufner V, Bordukalo Niksic T, Kozlovic M, Banic Tomisic Z, Bubic-Spoljar J, Bastalic I, Vikic-Topic S, Peric M, Pecina M, Grgurevic L (2014) The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing. Int Orthop 38:635–647

    Article  PubMed  Google Scholar 

  23. Sun X, Gan Y, Tang T, Zhang X, Dai K (2008) In vitro proliferation and differentiation of human mesenchymal stem cells cultured in autologous plasma derived from bone marrow. Tissue Eng Part A 14:391–400

    Article  PubMed  CAS  Google Scholar 

  24. Zhang ZY, Teoh SH, Chong MS, Lee ES, Tan LG, Mattar CN, Fisk NM, Choolani M, Chan J (2010) Neo-vascularization and bone formation mediated by fetal mesenchymal stem cell tissue-engineered bone grafts in critical-size femoral defects. Biomaterials 31:608–620

    Article  PubMed  CAS  Google Scholar 

  25. Al-Salihi KA (2004) Tissue-engineered bone via seeding bone marrow stem cell derived osteoblasts into coral: a rat model. Med J Malaysia 59:200–201

    PubMed  Google Scholar 

  26. Buschmann J, Härter L, Gao S, Hemmi S, Welti M, Hild N, Schneider OD, Stark WJ, Lindenblatt N, Werner CM, Wanner GA, Calcagni M (2012) Tissue engineered bone grafts based on biomimetic nanocomposite PLGA/amorphous calcium phosphate scaffold and human adipose-derived stem cells. Injury 43:1689–1697

    Article  PubMed  Google Scholar 

  27. Nuss KM, Auer JA, Boos A, von Rechenberg B (2006) An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones. BMC Musculoskelet Disord 7:67

    Article  PubMed  PubMed Central  Google Scholar 

  28. Theiss F, Apelt D, Brand B, Kutter A, Zlinszky K, Bohner M, Matter S, Frei C, Auer JA, von Rechenberg B (2005) Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials 26:4383–4394

    Article  PubMed  CAS  Google Scholar 

  29. Nunamaker DM (1998) Experimental models of fracture repair. Clin Orthop Relat Res 355:S56–65

    Article  PubMed  Google Scholar 

  30. Kruyt MC, Dhert WJ, Oner FC, van Blitterswijk CA, Verbout AJ, de Bruijn JD (2007) Analysis of ectopic and orthotopic bone formation in cell-based tissue-engineered constructs in goats. Biomaterials 28:1798–1805

    Article  PubMed  CAS  Google Scholar 

  31. Cao L, Liu G, Gan Y, Fan Q, Yang F, Zhang X, Tang T, Dai K (2012) The use of autologous enriched bone marrow MSCs to enhance osteoporotic bone defect repair in long-term estrogen deficient goats. Biomaterials 33:5076–5084

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Shandong Hongli Medical Animal Experimental Research Co Ltd for kindly supplying and breeding the sheep. This research was supported by the Natural Science Foundation of Shandong Province (ZR2010HQ033) and the Independent Innovation Foundation of Shandong University (IIFSDU) (2010TS032).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Li, M., Liu, P. et al. Tissue-engineered bone constructed in a bioreactor for repairing critical-sized bone defects in sheep. International Orthopaedics (SICOT) 38, 2399–2406 (2014). https://doi.org/10.1007/s00264-014-2389-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2389-8

Keywords

Navigation