Skip to main content
Log in

Application of the Marcus theory for analysis of the temperature dependence of the reactions leading to photosynthetic water oxidation: results and implications

  • ORIGINAL ARTICLE
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

 The temperature dependence of donor side reactions was analysed within the framework of the Marcus theory of nonadiabatic electron transfer. The following results were obtained for PS II membrane fragments from spinach: (1) the reorganisation energy of P680+• reduction by YZ is of the order of 0.5 eV in samples with a functionally fully competent water oxidising complex (WOC); (2) destruction of the WOC by Tris-washing gives rise to a drastic increase of λ to values of the order of 1.6 eV; (3) the reorganisation energies of the oxidation steps in the WOC are dependent, on the redox states S i with values of about 0.6 eV for the reactions YZ OX S 0→YZ S 1 and YZ OX S 1→YZ S 2, 1.6 eV for the reaction YZ OX S 2→YZ S 3 and 1.1 eV (above a characteristic temperature uc of about 6  °C) for the reaction YZ OX S 3→→YZ S 0+O2. Using an empirical rate constant-distance relationship, the van der Waals distance between YZ and P680 was found to be about 10 Å, independent of the presence or absence of the WOC, whereas the distance between YZ and the manganese cluster in the WOC was ≥15 Å. Based on the calculated activation energies the environment of YZ is inferred to be almost "dry" and hydrophobic when the WOC is intact but becomes enriched with water molecules after WOC destruction. Furthermore, it is concluded that the transition S 2S 3 is an electron transfer reaction gated by a conformational change, i.e. it comprises significant structural changes of functional relevance. Measurements of kinetic H/D isotope exchange effects support the idea that none of these reactions is gated by the break of a covalent O-H bond. The implications of these findings for the mechanism of water oxidation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 23 October 1997 / Accepted: 6 April 1998

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renger, G., Christen, G., Karge, M. et al. Application of the Marcus theory for analysis of the temperature dependence of the reactions leading to photosynthetic water oxidation: results and implications. JBIC 3, 360–366 (1998). https://doi.org/10.1007/s007750050245

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s007750050245

Navigation