Skip to main content
Log in

Pre-clinical evaluation of 99mTc-labeled chalcone derivative for amyloid-β imaging post-head trauma

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

42 plaque formation is one of the preliminary pathologic events that occur post traumatic brain injury (TBI) which is also among the most noteworthy hallmarks of AD. Their pre symptomatic detection is therefore vital for better disease management. Chalcone–picolinic acid chelator derivative, 6‐({[(6‐carboxypyridin‐2‐yl)methyl](2‐{4‐[(2E)‐3‐[4‐(dimethyl amino)phenyl]prop‐2‐enoyl]phenoxy}ethyl)amino}methyl)pyridine‐2‐carboxylic acid, Py-chal was synthesized to selectively identify amyloid plaques formed post head trauma using SPECT imaging by stable complexation to 99mTc with > 97% efficiency without compromising amyloid specificity. The binding potential of the Py-chal ligand to amyloid plaques remained high as confirmed by in vitro binding assay and photophysical spectra. Further, the Py-chal complex stained amyloid aggregates in the brain sections of rmTBI mice model. In vivo scintigraphy in TBI mice model displayed high uptake followed by high retention while the healthy rabbits displayed higher brain uptake followed by a rapid washout attributed to absence of amyloid plaques. Higher uptake in brain of TBI model was also confirmed by ex vivo biodistribution analysis wherein brain uptake of 3.38 ± 0.2% ID/g at 2 min p.i. was observed for TBI mice model. This was followed by prolonged retention and more than twofold higher activity as compared to sham mice brain. This preliminary data suggests the specificity of the radiotracer for amyloid detection post head trauma and applicability of 99mTc labeled Py-chal complex for TBI-induced β-amyloid SPECT imaging.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Johnson VE, Stewart W, Arena JD, Smith DH (2017) Traumatic brain injury as a trigger of neurodegeneration. In: Beart P, Robinson M, Rattray M, Maragakis NJ (eds) Neurodegenerative diseases. Springer New York LLC, Cham

    Google Scholar 

  2. Bramlett HM, Dietrich WD (2015) Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurological outcomes. J Neurotrauma 32:1834–1848. https://doi.org/10.1089/neu.2014.3352

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kudryashev JA, Waggoner LE, Leng HT et al (2020) An activity-based nanosensor for traumatic brain injury. ACS Sensors 5:686–692. https://doi.org/10.1021/acssensors.9b01812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johnson VE, Stewart W, Smith DH (2012) Widespread tau and amyloid-beta pathology many years after a single traumatic brain injury in humans. Brain Pathol 22:142–149. https://doi.org/10.1111/j.1750-3639.2011.00513.x

    Article  CAS  PubMed  Google Scholar 

  5. Mckee AC, Daneshvar DH (2015) The neuropathology of traumatic brain injury. In: Jordan Grafman AMS (ed) Handbook of clinical neurology. Elsevier, Amsterdam

    Google Scholar 

  6. Smith DH, Johnson VE, Stewart W (2013) Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol 9:211–221. https://doi.org/10.1038/nrneurol.2013.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Loane DJ, Kumar A (2016) Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp Neurol 275:316–327. https://doi.org/10.1016/j.expneurol.2015.08.018

    Article  CAS  PubMed  Google Scholar 

  8. Graham NS, Sharp DJ (2019) Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. J Neurol Neurosurg Psychiatry 90:1221–1233. https://doi.org/10.1136/jnnp-2017-317557

    Article  PubMed  Google Scholar 

  9. Mouzon BC, Bachmeier C, Ferro A et al (2014) Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Ann Neurol 75:241–254. https://doi.org/10.1002/ana.24064

    Article  PubMed  Google Scholar 

  10. Uryu K, Chen X-H, Martinez D et al (2007) Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp Neurol 208:185–192. https://doi.org/10.1016/j.expneurol.2007.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith DH, Chen X, Iwata A, Graham DI (2003) Amyloid β accumulation in axons after traumatic brain injury in humans. J Neurosurg 98:1072–1077. https://doi.org/10.3171/jns.2003.98.5.1072

    Article  CAS  PubMed  Google Scholar 

  12. Kojro E, Fahrenholz F (2005) The non-amyloidogenic pathway: structure and function of α-secretases. In: Harris JR, Fahrenholz F (eds) Alzheimer’s disease, subcellular biochemistry. Springer, Boston

    Google Scholar 

  13. Kowalska A (2004) The beta-amyloid cascade hypothesis: a sequence of events leading to neurodegeneration in Alzheimer’s disease. Neurol Neurochir Pol 38:405–411

    PubMed  Google Scholar 

  14. Edwards G, Moreno-Gonzalez I, Soto C (2017) Amyloid-beta and tau pathology following repetitive mild traumatic brain injury. Biochem Biophys Res Commun 483:1137–1142. https://doi.org/10.1016/j.bbrc.2016.07.123

    Article  CAS  PubMed  Google Scholar 

  15. Ono M, Haratake M, Mori H, Nakayama M (2007) Novel chalcones as probes for in vivo imaging of β-amyloid plaques in Alzheimer’s brains. Bioorganic Med Chem 15:6802–6809. https://doi.org/10.1016/j.bmc.2007.07.052

    Article  CAS  Google Scholar 

  16. Ono M, Watanabe R, Kawashima H et al (2009) Fluoro-pegylated chalcones as positron emission tomography probes for in vivo imaging of β-amyloid plaques in Alzheimer’s disease. J Med Chem 52:6394–6401. https://doi.org/10.1021/jm901057p

    Article  CAS  PubMed  Google Scholar 

  17. Ono M, Ikeoka R, Watanabe H et al (2010) Synthesis and evaluation of novel chalcone derivatives with 99mTc/Re complexes as potential probes for detection of β-amyloid plaques. ACS Chem Neurosci 1:598–607. https://doi.org/10.1021/cn100042d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fosso MY, McCarty K, Head E et al (2016) Differential effects of structural modifications on the competition of chalcones for the PIB amyloid imaging ligand-binding site in Alzheimer’s disease brain and synthetic Aβ fibrils. ACS Chem Neurosci 7:171–176. https://doi.org/10.1021/acschemneuro.5b00266

    Article  CAS  PubMed  Google Scholar 

  19. Viet MH, Chen C-Y, Hu C-K et al (2013) Discovery of dihydrochalcone as potential lead for Alzheimer’s disease: in silico and in vitro study. PLoS ONE 8:e79151. https://doi.org/10.1371/journal.pone.0079151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chauhan K, Tiwari AK, Chadha N et al (2018) Chalcone based homodimeric PET agent, 11 C-(Chal) 2 DEA-Me, for beta amyloid imaging: synthesis and bioevaluation. Mol Pharm 15:1515–1525. https://doi.org/10.1021/acs.molpharmaceut.7b01070

    Article  CAS  PubMed  Google Scholar 

  21. Mann G, Chauhan K, Kumar V et al (2022) Bio-evaluation of 99mTc-labeled homodimeric chalcone derivative as amyloid-β-targeting probe. Front Med. https://doi.org/10.3389/fmed.2022.813465

    Article  Google Scholar 

  22. Chauhan K, Datta A, Adhikari A et al (2014) 68 Ga based probe for Alzheimer’s disease: synthesis and preclinical evaluation of homodimeric chalcone in β-amyloid imaging. Org Biomol Chem 12:7328. https://doi.org/10.1039/C4OB00941J

    Article  CAS  PubMed  Google Scholar 

  23. Fuchigami T, Yamashita Y, Haratake M, Ono M, Yoshida S, Nakayama M et al (2014) Synthesis and evaluation of ethyleneoxylated and allyloxylated chalcone derivatives for imaging of amyloid β plaques by SPECT. Bioorganic Med Chem 22:2622–2628

    Article  CAS  Google Scholar 

  24. Watanabe H, Saji H, Ono M (2018) Novel fluorescence probes based on the chalcone scaffold for in vitro staining of β-amyloid plaques. Bioorg Med Chem Lett 28:3242–3246. https://doi.org/10.1016/j.bmcl.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  25. Kadiyala KG, Tyagi T, Kakkar D et al (2015) Picolinic acid based acyclic bifunctional chelating agent and its methionine conjugate as potential SPECT imaging agents: syntheses and preclinical evaluation. RSC Adv 5:33963–33973. https://doi.org/10.1039/C4RA13690J

    Article  CAS  Google Scholar 

  26. Sneddon D, Cornelissen B (2021) Emerging chelators for nuclear imaging. Curr Opin Chem Biol 63:152–162. https://doi.org/10.1016/j.cbpa.2021.03.001

    Article  CAS  PubMed  Google Scholar 

  27. Comba P, Grimm L, Orvig C et al (2016) Synthesis and coordination chemistry of hexadentate picolinic acid based bispidine ligands. Inorg Chem 55:12531–12543. https://doi.org/10.1021/acs.inorgchem.6b01787

    Article  CAS  PubMed  Google Scholar 

  28. Boros E, Ferreira CL, Cawthray JF et al (2010) Acyclic chelate with ideal properties for 68 Ga pet imaging agent elaboration. J Am Chem Soc 132:15726–15733. https://doi.org/10.1021/ja106399h

    Article  CAS  PubMed  Google Scholar 

  29. Mann G, Kadiyala KG, Thirumal M et al (2021) Receptor mapping using methoxy phenyl piperazine derivative: Preclinical PET imaging. Bioorg Chem 117:105429. https://doi.org/10.1016/j.bioorg.2021.105429

    Article  CAS  PubMed  Google Scholar 

  30. Levy Nogueira M, Hamraz M, Abolhassani M et al (2018) Mechanical stress increases brain amyloid β, tau, and α-synuclein concentrations in wild-type mice. Alzheimer’s Dement 14:444–453. https://doi.org/10.1016/j.jalz.2017.11.003

    Article  Google Scholar 

  31. Clement CG, Truong LD (2014) An evaluation of congo red fluorescence for the diagnosis of amyloidosis. Hum Pathol 45:1766–1772. https://doi.org/10.1016/j.humpath.2014.04.016

    Article  CAS  PubMed  Google Scholar 

  32. Skovronsky DM, Zhang B, Kung MP et al (2000) In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 97:7609–7614. https://doi.org/10.1073/pnas.97.13.7609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ono M, Hayashi S, Kimura H et al (2009) Push–pull benzothiazole derivatives as probes for detecting β-amyloid plaques in Alzheimer’s brains. Bioorg Med Chem 17:7002–7007. https://doi.org/10.1016/j.bmc.2009.08.032

    Article  CAS  PubMed  Google Scholar 

  34. Chen F, Bai M, Liu W et al (2021) H2dpa derivatives containing pentadentate ligands: an acyclic adjuvant potentiates meropenem activity in vitro and in vivo against metallo-β-lactamase-producing Enterobacterales. Eur J Med Chem 224:113702. https://doi.org/10.1016/j.ejmech.2021.113702

    Article  CAS  PubMed  Google Scholar 

  35. Jacques AV, Stefanes NM, Walter LO et al (2021) Synthesis of chalcones derived from 1-naphthylacetophenone and evaluation of their cytotoxic and apoptotic effects in acute leukemia cell lines. Bioorg Chem 116:105315. https://doi.org/10.1016/j.bioorg.2021.105315

    Article  CAS  PubMed  Google Scholar 

  36. Yu F, Zhang Y, Chuang D-M (2012) Lithium reduces BACE1 Overexpression, beta amyloid accumulation, and spatial learning deficits in mice with traumatic brain injury. J Neurotrauma 29:2342–2351. https://doi.org/10.1089/neu.2012.2449

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bird SM, Sohrabi HR, Sutton TA et al (2016) Cerebral amyloid-β accumulation and deposition following traumatic brain injury—a narrative review and meta-analysis of animal studies. Neurosci Biobehav Rev 64:215–228. https://doi.org/10.1016/j.neubiorev.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  38. Zhang X, Hou Y, Peng C et al (2018) Oligoethyleneoxy-modified 99m Tc-labeled β-amyloid imaging probes with improved brain pharmacokinetics for single-photon emission computed tomography. J Med Chem 61:1330–1339. https://doi.org/10.1021/acs.jmedchem.7b01834

    Article  CAS  PubMed  Google Scholar 

  39. Tournier BB, Tsartsalis S, Rigaud D et al (2019) TSPO and amyloid deposits in sub-regions of the hippocampus in the 3xTgAD mouse model of Alzheimer’s disease. Neurobiol Dis 121:95–105. https://doi.org/10.1016/j.nbd.2018.09.022

    Article  CAS  PubMed  Google Scholar 

  40. Watanabe H, Ono M, Iikuni S et al (2015) Synthesis and biological evaluation of 123 I-labeled pyridyl benzoxazole derivatives: novel β-amyloid imaging probes for single-photon emission computed tomography. RSC Adv 5:1009–1015. https://doi.org/10.1039/C4RA10742J

    Article  CAS  Google Scholar 

  41. Ono M, Ikeoka R, Watanabe H et al (2010) 99mTc/Re complexes based on flavone and aurone as SPECT probes for imaging cerebral β-amyloid plaques. Bioorg Med Chem Lett 20:5743–5748. https://doi.org/10.1016/j.bmcl.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  42. Kiritsis C, Mavroidi B, Shegani A et al (2017) 2-(4′-Aminophenyl)benzothiazole labeled with 99m Tc-cyclopentadienyl for imaging β-amyloid plaques. ACS Med Chem Lett 8:1089–1092. https://doi.org/10.1021/acsmedchemlett.7b00294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang X, Yu P, Yang Y et al (2016) 99m Tc-labeled 2-arylbenzothiazoles: Aβ imaging probes with favorable brain pharmacokinetics for single-photon emission computed tomography. Bioconjug Chem 27:2493–2504. https://doi.org/10.1021/acs.bioconjchem.6b00444

    Article  CAS  PubMed  Google Scholar 

  44. Molavipordanjani S, Emami S, Mardanshahi A et al (2019) Novel 99mTc-2-arylimidazo[2,1-b]benzothiazole derivatives as SPECT imaging agents for amyloid-β plaques. Eur J Med Chem 175:149–161. https://doi.org/10.1016/j.ejmech.2019.04.069

    Article  CAS  PubMed  Google Scholar 

  45. Jokar S, Behnammanesh H, Erfani M et al (2020) Synthesis, biological evaluation and preclinical study of a novel 99mTc-peptide: a targeting probe of amyloid-β plaques as a possible diagnostic agent for Alzheimer’s disease. Bioorg Chem 99:103857. https://doi.org/10.1016/j.bioorg.2020.103857

    Article  CAS  PubMed  Google Scholar 

  46. Sun L, Cho H-J, Sen S et al (2021) Amphiphilic distyrylbenzene derivatives as potential therapeutic and imaging agents for soluble and insoluble amyloid β aggregates in Alzheimer’s disease. J Am Chem Soc 143:10462–10476. https://doi.org/10.1021/jacs.1c05470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director of the Institute of Nuclear Medicine and Allied Sciences for providing the necessary facilities.

Funding

This work has been supported by Defence Research and Development Organization, Ministry of Defence.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Thirumal or Anupama Datta.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2379 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mann, G., Daksh, S., Kumar, N. et al. Pre-clinical evaluation of 99mTc-labeled chalcone derivative for amyloid-β imaging post-head trauma. J Biol Inorg Chem (2024). https://doi.org/10.1007/s00775-024-02049-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00775-024-02049-x

Keywords

Navigation