Skip to main content
Log in

Synthesis, characterization, anticancer efficacy evaluation of ruthenium(II) and iridium(III) polypyridyl complexes toward A549 cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A new ligand DFIP (2-(dibenzo[b,d]furan-3-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) and its two complexes iridium(III) [Ir(ppy)2(DFIP)](PF6) (ppy = 2-phenylpyridine, Ir1) and ruthenium(II) [Ru(bpy)2(DFIP)](PF6)2 (bpy = 2,2′-bipyridine, Ru1) were synthesized and characterized. The anticancer effects of the two complexes on A549, BEL-7402, HepG2, SGC-7901, HCT116 and normal LO2 cells were tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Complex Ir1 shows high cytotoxic activity on A549, BEL-7402, SGC-7901 and HepG2, Ru1 exhibits moderate anticancer activity toward A549, BEL-7402 and SGC-7901 cells. The IC50 values of Ir1 and Ru1 toward A549 are 7.2 ± 0.1 and 22.6 ± 1.4 μM, respectively. The localization of complexes Ir1 and Ru1 in the mitochondrial, intracellular accumulation of reactive oxygen species (ROS) levels, and the changes of mitochondrial membrane potential (MMP) and cytochrome c (cyto-c) were investigated. Apoptosis and cell cycle were detected by flow cytometry. Immunogenic cell death (ICD) was used to detect the effects of Ir1 and Ru1 on the A549 using a confocal laser scanning microscope. The expression of apoptosis-related proteins was detected by western blotting. Ir1 and Ru1 can increase the intracellular ROS levels and release cyto-c, reduce the MMP, leading to the apoptosis of A549 cells and blocking the A549 cells at the G0/G1 phase. Additionally, the complexes caused a decrease of the expression of polyADP-ribose polymerase (PARP), caspase 3, Bcl-2 (B-cell lymphoma-2), PI3K (phosphoinositide-3 kinase) and upregulated the expression of Bax. All these findings indicated that the complexes exert anticancer efficacy to induce cell death through immunogenic cell death, apoptosis, and autophagy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

Abbreviations

A549:

Human lung cells

anti-p-mTOR:

Anti-p-mammalian target of rapamycin

AKT:

Protein kinase B

Bax:

Bcl-2 associated x protein

BCA:

Bicinchoninic acid

Bcl-2:

B-cell lymphoma-2

Beclin-1:

Bcl-2-interacting protein-1

BEL-7402:

Human hepatocellular carcinoma

BH3:

Bcl-2 homology-3

bpy:

2,2′-Bipyridine

CCCP:

Carbonyl cyanide m-chlorophenyl hydrazone

CRT:

Calreticulin

cyto-c:

Cytochrome c

DAPI:

4′,6-Diamidino-2-phenylindole

DCFH-DA:

2′,7′-Dichlorodihydrofluorescein diacetate

DFIP:

2-(Dibenzo[b,d]furan-3-yl)-1H-imidazo[4,5-f][1,10]phenanthroline

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

ECL:

Electrochemiluminescence

FAK:

Focal adhesion kinase

FBS:

Fetal bovine serum

GSH:

Glutathione

HCT116:

Human colon cancer

HepG2:

Human hepatocellular carcinoma

HMGB1:

High mobility group box 1

HSP70:

Heat-shock protein 70 kDa

ICD:

Immunogenic cell death

JC-1:

5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylimiacarbocyanine iodide

LO2:

Human liver cell

MDC:

Monodansylcadaerine

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

MMP:

Mitochondrial membrane potential

mTOR:

Mammalian target of rapamycin

PARP:

PolyADP-ribose polymerase

PBS:

Phosphate buffer solution

PI:

Propidium iodide

PI3K:

Phosphoinositide-3 kinase

ppy:

2-Phenylpyridine

RNase:

Ribonuclease

ROS:

Reactive oxygen species

SGC-7901:

Human gastric cancer

TMS:

Tetramethylsilane

Tris:

Tris(hydroxymethylaminomethane

Tween:

Polyoxyethylene monolaurate sorbitan

References

  1. Bai L, Fei WD, Gu YY, He M, Du F, Zhang WY, Yang LL, Liu YJ (2020) Liposomes encapsulated iridium(III) polypyridyl complexes enhance anticancer activity in vitro and in vivo. J Inorg Biochem 205:111014

    Article  CAS  PubMed  Google Scholar 

  2. Dabrowiak JC (2009) Metals in medicine. Wiley, West Sussex

    Book  Google Scholar 

  3. Shao F, Elias B, Lu W, Barton JK (2007) Synthesis and characterization of iridium(III) cyclometalated complexes with oligonucleotides: insights into redox reactions with DNA. Inorg Chem 46:10187–10199

    Article  CAS  PubMed  Google Scholar 

  4. Muhammad N, Guo ZJ (2014) Metal-based anticancer chemotherapeutic agents. Curr Opin Chem Biol 19:144–153

    Article  CAS  PubMed  Google Scholar 

  5. Li W, Han BJ, Yao JH, Jiang GB, Liu YJ (2015) Cytotoxicity in vitro, cell migration and apoptotic mechanism studies induced by ruthenium(II) complexes. RSC Adv 5:24534–24543

    Article  CAS  Google Scholar 

  6. Prakash G, Manikandan R, Viswanathamurthi P, Velmurugan K, Nandhakumar R (2014) Ruthenium(III) S-methylisothiosemicarbazone schiff base complexes bearing PPh3/AsPh3 coligand: synthesis, structure and biological investigations, including antioxidant, DNA and protein interaction, and in vitro anticancer activities. J Photochem Photobiol B 138:63–74

    Article  CAS  PubMed  Google Scholar 

  7. Adeniyi AA, Ajibade PA (2013) An insight into the anticancer activities of Ru(II)-based metallocompounds using docking methods. Molecules 18:10829–10856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xie YY, Li ZZ, Lin GJ, Huang HL, Wang XZ, Liang ZH, Jiang GB, Liu YJ (2013) DNA interaction, cytotoxicity, apoptotic activity, cell cycle arrest, reactive oxygen species and mitochondrial membrane potential assay induced by ruthenium(II) polypyridyl complexes. Inorg Chimica Acta 405:228–234

    Article  CAS  Google Scholar 

  9. Dömötör O, Hartinger CG, Bytzek AK, Kiss T, Keppler BK, Enyedy EA (2013) Characterization of the binding sites of the anticancer ruthenium(III) complexes KP1019 and KP1339 on human serum albumin via competition studies. J Biol Inorg Chem 18:9–17

    Article  PubMed  Google Scholar 

  10. Grada A, Otero-Vinas M, Prieto-Castrillo F, Obagi Z, Falanga V (2017) Research techniques made simple: analysis of collective cell migration using the wound healing assay. J Invest Dermatol 137:e11–e16

    Article  CAS  PubMed  Google Scholar 

  11. Liu YJ, Liang ZH, Hong XL, Li ZZ, Yao JH, Huang HL (2012) Synthesis, characterization, cytotoxicity, apoptotic inducing activity, cellular uptake, interaction of DNA binding and antioxidant activity studies of ruthenium(II) complexes. Inorg Chim Acta 387:117–124

    Article  CAS  Google Scholar 

  12. Vellaisamy K, Li GD, Wang WH, Leung CH, Ma DL (2018) A long-lived peptide-conjugated iridium(III) complex as a luminescent probe and inhibitor of the cell migration mediator, formyl peptide receptor 2. Chem Sci 9:8171–8177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou Y, Bai L, Tian L, Yang LL, Zhang HW, Zhang YY, Hao J, Gu YY, Liu YJ (2021) Iridium(III)-BBIP complexes induce apoptosis via PI3K/AKT/mTOR pathway and inhibit A549 lung tumor growth in vivo. J Inorg Biochem 223:111550

    Article  CAS  PubMed  Google Scholar 

  14. Liu Z, Romero-Canelón I, Qamar B, Hearn JM, Habtemariam A, Barry NP, Pizarro AM, Clarkson GJ, Sadler PJ (2014) The potent oxidant anticancer activity of organoiridium catalysts. Angew Chem Int Ed Engl 53:3941–3946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu YJ, Zeng CH, Yao JH, Wu FH, He LX, Huang HL (2010) Synthesis, structure, DNA-binding properties, and cytotoxicity of ruthenium (II) polypyridyl complexes. Chem Biodivers 7:1770–1783

    Article  CAS  PubMed  Google Scholar 

  16. Zhang LZ, Wang F, Li DM, Yan YF, Wang HY (2021) Transferrin receptor-mediated reactive oxygen species promotes ferroptosis of KGN cells via regulating NADPH oxidase 1/PTEN induced kinase 1/acyl-CoA synthetase long chain family member 4 signaling. Bioengineered 12:4983–4994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Porporato PE, Filigheddu N, Pedro JMB, Kroemer G, Galluzzi L (2018) Mitochondrial metabolism and cancer. Cell Res 28:265–280

    Article  CAS  PubMed  Google Scholar 

  18. Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, Babenko VA, Zorov SD, Balakireva AV, Juhaszova M, Sollott SJ, Zorov DB (2018) Mitochondrial membrane potential. Anal Biochem 552:50–59

    Article  CAS  PubMed  Google Scholar 

  19. Liu YS, Li QQ, Gu MJ, Lu DS, Xiong XX, Zhang ZY, Pan YN, Liao YQ, Ding QH, Gong WX, Chen DS, Guan MT, Wu JZ, Tian ZQ, Deng H, Gu LJ, Hong XC, Xiao YL (2022) A second near-infrared Ru(II) polypyridyl complex for synergistic chemo-photothermal therapy. J Med Chem 65:2225–2237

    Article  CAS  PubMed  Google Scholar 

  20. Chen BB, Pan NL, Liao JX, Huang MY, Jiang DC, Wang JJ, Qiu HJ, Chen JX, Li L, Sun J (2021) Cyclometalated iridium(III) complexes as mitochondria-targeted anticancer and antibacterial agents to induce both autophagy and apoptosis. J Inorg Biochem 219:111450

    Article  CAS  PubMed  Google Scholar 

  21. Zhang HW, Liao XF, Wu XY, Shi CL, Zhang YY, Yuan YH, Li WL, Wang J, Liu YJ (2022) Iridium(III) complexes entrapped in liposomes trigger mitochondria-mediated apoptosis and GSDME-mediated pyroptosis. J Inorg Biochem 228:111706

    Article  CAS  PubMed  Google Scholar 

  22. Popolin CP, Cominetti MR (2017) A review of ruthenium complexes activities on breast cancer cells. Mini Rev Med Chem 17:1435–1441

    Article  CAS  PubMed  Google Scholar 

  23. Southam HM, Butler JA, Chapman JA, Poole RK (2017) The microbiology of ruthenium complexes. Adv Microb Physiol 71:1–96

    Article  CAS  PubMed  Google Scholar 

  24. Liang LJ, Wu XY, Shi CL, Wen HY, Wu SH, Chen J, Huang CX, Liu YJ (2022) Synthesis and characterization of polypyridine ruthenium(II) complexes and anticancer efficacy studies in vivo and in vitro. J Inorg Biochem 236:111963

  25. Wang JW, Liu HM, Wu XY, Shi CL, Li WL, Yuan YH, Liu YJ, Xing DG (2022) Induction of apoptosis in SGC-7901 cells by iridium(III) complexes via endoplasmic reticulum stress-mitochondrial dysfunction pathway. J Biol Inorg Chem 27:455–469

    Article  CAS  PubMed  Google Scholar 

  26. Li WL, Shi CL, Wu XY, Zhang YY, Liu HM, Wang XZ, Huang CX, Liang LJ, Liu YJ (2022) Light activation of iridium (III) complexes driving ROS production and DNA damage enhances anticancer activity in A549 cells. J Inorg Biochem 236:111977

    Article  CAS  PubMed  Google Scholar 

  27. Zhang YY, Zhou Y, Zhang HW, Tian L, Hao J, Yuan YH, Li WL, Liu YJ (2021) DNA-binding and evaluation of anticancer activity in vitro and in vivo of iridium(III) polypyridyl complexes. J Inorg Biochem 224:111580

    Article  CAS  PubMed  Google Scholar 

  28. Tian L, Zhang YY, Zhang HW, Zhou Y, Li WL, Yuan YH, Hao J, Yang LL, Liu YJ (2021) Synthesis and evaluation of iridium(III) complexes on antineoplastic activity against human gastric carcinoma SGC-7901 cells. J Biol Inorg Chem 26:705–714

    Article  CAS  PubMed  Google Scholar 

  29. Yuan YH, Shi CL, Wu XY, Li WL, Huang CX, Liang LJ, Chen J, Wang Y, Liu YJ (2022) Synthesis and anticancer activity in vitro and in vivo evaluation of iridium(III) complex on mouse melanoma B16 cells. J Inorg Biochem 232:111820

    Article  CAS  PubMed  Google Scholar 

  30. Proksch P, Rodriguez E (1983) Chromenes and benzofurans of the asteraceae, their chemistry and biological significance. Phytochemistry 22:2335–2348

    Article  CAS  Google Scholar 

  31. Farhat J, Alzyoud L, Al-Omari B (2022) Structure–activity relationship of benzofuran derivatives with potential anticancer activity. Cancers 14:2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamada M, Tanaka Y, Yoshimoto Y, Kuroda S, Shimao I (1992) Synthesis and properties of diamino-substituted dipyrido[3,2-a:2′,3′-c]phenazine. Bull Chem Soc Jpn 65:2007–2009

    Article  CAS  Google Scholar 

  33. Sprouse S, King KA, Spellane PJ, Watts RJ (1984) Photophysical effects of metal-carbon σ bonds in ortho-metalated complexes of Ir(III) and Rh(III). J Am Chem Soc 106:6647–6653

    Article  CAS  Google Scholar 

  34. Sullivan BP, Salmon DJ, Meyer TJ (1978) Mixed phosphine 2,2′-bipyridine complexes of ruthenium. Inorg Chem 17:3334–3341

    Article  CAS  Google Scholar 

  35. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

  36. Hao J, Zhang HW, Tian L, Yang LL, Zhou Y, Zhang YY, Liu YJ, Xing DG (2021) Evaluation of anticancer effects in vitro of new iridium(III) complexes targeting the mitochondria. J Inorg Biochem 221:111465

    Article  CAS  PubMed  Google Scholar 

  37. Gu YY, Wen HY, Zhang YY, Bai L, Zhou Y, Zhang HW, Tian L, Hao J, Liu YJ (2021) Studies of anticancer activity in vivo and in vitro behaviors of liposomes encapsulated iridium(III) complex. J Biol Inorg Chem 26:109–122

    Article  CAS  PubMed  Google Scholar 

  38. Ray LJ, Binner M, Holzheu A, Friedrichs J, Freudenberg U, Hutmacher DW, Werner C (2015) Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis. Biomaterials 53:609–620

    Article  Google Scholar 

  39. Koch MK, Jaeschke A, Murekatete B, Ravichandran A, Tsurkan M, Werner C, Soon P, Hutmacher DW, Haupt LM, Bray LJ (2020) Stromal fibroblasts regulate microvascular-like network architecture in a bioengineered breast tumour angiogenesis model. Acta Biomater 114:256–269

    Article  CAS  PubMed  Google Scholar 

  40. Zhang W, Moore L, Ji P (2011) Mouse models for cancer research. Chin J Cancer 30:149–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Langhans SA (2018) Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol 9:6

    Article  PubMed  PubMed Central  Google Scholar 

  42. Eastman A (2004) Cell cycle checkpoints and their impact on anticancer therapeutic strategies. J Cell Biochem 91:223–231

    Article  CAS  PubMed  Google Scholar 

  43. Jelic MD, Mandic AD, Maricic SM, Srdjenovic BU (2021) Oxidative stress and its role in cancer. J Cancer Res Ther 17:22–28

    Article  CAS  PubMed  Google Scholar 

  44. Ow YP, Green DR, Hao Z, Mak TW (2008) Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol 9:532–542

    Article  CAS  PubMed  Google Scholar 

  45. Bock FJ, Tait S (2020) Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 21:85–100

    Article  CAS  PubMed  Google Scholar 

  46. Caroppi P, Sinibaldi F, Fiorucci L, Santucci R (2009) Apoptosis and human diseases: mitochondrion damage and lethal role of released cytochrome C as proapoptotic protein. Curr Med Chem 16:4058–4065

    Article  CAS  PubMed  Google Scholar 

  47. Murugan AK (2019) mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol 59:92–111

    Article  CAS  PubMed  Google Scholar 

  48. Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 4:64

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wu XW, Yu JY, Yan JY, Dai J, Si L, Chi ZH, Sheng XN, Cui CL, Ma M, Tang H, Xu TX, Yu H, Kong Y, Guo J (2018) PI3K/AKT/mTOR pathway inhibitors inhibit the growth of melanoma cells with mTOR H2189Y mutations in vitro. Cancer Biol Ther 19:584–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  CAS  PubMed  Google Scholar 

  51. Hay N (2005) The Akt-mTOR tango and its relevance to cancer. Cancer Cell 8:179–183

    Article  CAS  PubMed  Google Scholar 

  52. Rong L, Li ZD, Leng X, Li HY, Ma YP, Chen YK, Song FZ (2020) Salidroside induces apoptosis and protective autophagy in human gastric cancer AGS cells through the PI3K/Akt/mTOR pathway. Biomed Pharmacother 122:109726

    Article  CAS  PubMed  Google Scholar 

  53. Kim KY, Park KI, Kim SH, Yu SN, Park SG, Kim YW, Seo YK, Ma JY, Ahn SC (2017) Inhibition of autophagy promotes salinomycin-induced apoptosis via reactive oxygen species-mediated PI3K/AKT/mTOR and ERK/p38 MAPK-dependent signaling in human prostate cancer cells. Int J Mol Sci 18:1088

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cory S, Adams JM (2005) Killing cancer cells by flipping the Bcl-2/Bax switch. Cancer Cell 8:5–6

    Article  CAS  PubMed  Google Scholar 

  55. Han JY, Chung YJ, Park SW, Kim JS, Rhyu MG, Kim HK, Lee KS (1999) The relationship between cisplatin-induced apoptosis and p53, bcl-2 and bax expression in human lung cancer cells, Korean. J Intern Med 14:42–52

    CAS  Google Scholar 

  56. Goodall EA, Kraus F, Harper JW (2022) Mechanisms underlying ubiquitin-driven selective mitochondrial and bacterial autophagy. Mol Cell 82:1501–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Park NY, Jo DS, Cho DH (2022) Post-translational modifications of ATG4B in the regulation of autophagy. Cells 11:1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang YH, Shu X, Xie C (2022) An overview of autophagy in helicobacter pylori infection and related gastric cancer. Front Cell Infect Microbiol 12:847716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R, Verspurten J, Declercq W, Agostinis P, Vanden Berghe T, Lippens S, Vandenabeele P (2010) Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis 1:e18

  60. Li H, Wang P, Sun QH, Ding WX, Yin XM, Sobol RW, Stolz DB, Yu J, Zhang L (2011) Following cytochrome c release, autophagy is inhibited during chemotherapy-induced apoptosis by caspase 8-mediated cleavage of Beclin 1. Cancer Res 71:3625–3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu Z, Wang F, Zhou ZW, Xia HC, Wang XY, Yang YX, He ZX, Sun T, Zhou SF (2017) Alisertib induces G(2)/M arrest, apoptosis, and autophagy via PI3K/Akt/mTOR- and p38 MAPK-mediated pathways in human glioblastoma cells. Am J Trans Res 9:845–873

    CAS  Google Scholar 

  62. Ahmed A, Tait S (2020) Targeting immunogenic cell death in cancer. Mol Oncol 14:2994–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang LL, Guan RL, Xie LN, Liao XX, Xiong K, Rees TW, Chen Y, Ji LN, Chao H (2021) An ER-targeting iridium(III) complex that induces immunogenic cell death in non-small-cell lung cancer. Angew Chem Int Ed 60:4657–4665

    Article  CAS  Google Scholar 

  64. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21877018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Yang or Yunjun Liu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 5635 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Yang, Y., Liu, H. et al. Synthesis, characterization, anticancer efficacy evaluation of ruthenium(II) and iridium(III) polypyridyl complexes toward A549 cells. J Biol Inorg Chem 28, 421–437 (2023). https://doi.org/10.1007/s00775-023-01997-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-023-01997-0

Keywords

Navigation