Skip to main content
Log in

Anticancer and antibacterial activity in vitro evaluation of iridium(III) polypyridyl complexes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Three iridium(III) polypyridyl complexes [Ir(ppy)2(PYTA)](PF6) (1) (ppy = 2-phenylpyridine), [Ir(bzq)2(PYTA)](PF6) (2) (bzq = benzo[h]quinolone) and [Ir(piq)2(PYTA)](PF6) (3) (piq = 1-phenylisoquinoline, PYTA = 2,4-diamino-6-(2′-pyridyl)-1,3,5-triazine) were synthesized and characterized by elemental analysis, IR, 1H NMR and 13C NMR. The cytotoxic activity of the complexes toward cancer SGC-7901, Eca-109, A549, HeLa, HepG2, BEL-7402 and normal LO2 cell lines was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Complex 3 shows the most effective on inhibiting the above cell growth among these complexes. The complexes locate at the lysosomes and mitochondria. AO/EB, Annex V and PI and comet assays indicate that the complexes can induce apoptosis in SGC-7901 cells. Intracellular ROS and mitochondrial membrane potential were examined under fluorescence microscopy. The results demonstrate that the complexes increase the intracellular ROS levels and induce a decrease in the mitochondrial membrane potential. The complexes can enhance intracellular Ca2+ concentration and cause a release of cytochrome c. The autophagy was studied using MDC staining and western blot. Complexes 13 can effectively inhibit the cell invasion with a concentration-dependent manner. Additionally, the complexes target tubules and inhibit the polymerization of tubules. The antimicrobial activity of the complexes against S. aureus, E. coli, Salmonella and L. monocytogenes was explored. The mechanism shows that the complexes induce apoptosis in SGC-7901 cells through ROS-mediated lysosomal–mitochondrial, targeting tubules and damage DNA pathways.

Graphical Abstract

Three iridium(III) complexes [Ir(N–C)2(PYTA)](PF6) (N–C = ppy, 1; bzq, 2; piq, 3) were synthesized and characterized. The anticancer activity of the complexes against SGC-7901 cells was studied by apoptosis, comet assay, autophagy, ROS, mitochondrial membrane potential, intracellular Ca2+ levels, release of cytochrome c, tubules and western blot analysis. The antibacterial activity in vitro was also assayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mjos KD, Orvig C (2014) Chem Rev 114:4540–4563

    Article  PubMed  CAS  Google Scholar 

  2. Muhammad N, Guo Z (2014) Curr Opin Chem Biol 19:144–153

    Article  PubMed  CAS  Google Scholar 

  3. Komeda S, Casini A (2012) Curr Top Med Chem 12:219–235

    Article  PubMed  CAS  Google Scholar 

  4. Zhang X, Wang F, Zhang C, Wu S, Zheng X, Gong T, Ding R, Chen K, Bai D (2018) Inorg Chem Commun 94:92–97

    Article  CAS  Google Scholar 

  5. Liu Z, Romero-Canel I, Qamar B, Hearn JM, Habtemariam A, Barry NPE, Pizarro AM, Clarkson GJ, Sadler PJ (2014) Angew Chem Int Ed 53:4022–4027

    Article  Google Scholar 

  6. Liu Z, Sadler PJ (2016) Accounts Chem Res 47:1174–1185

    Article  CAS  Google Scholar 

  7. Leung CH, Zhong HJ, Chan DSH, Ma DL (2013) Coord Chem Rev 257:1764–1776

    Article  CAS  Google Scholar 

  8. Barry NPE, Sadler PJ (2012) Chem Soc Rev 41:3264–3279

    Article  PubMed  CAS  Google Scholar 

  9. Sch€afer S, Sheldrick WS (2007) J Organomet Chem 692:1300–1309

    Article  CAS  Google Scholar 

  10. Wilbuer Danielle A, Vlecken DH, Schmitz DJ, Kr€aling K, Harms K, Bagowski CP, Meggers E (2010) Angew Chem Int Ed 49:3839–3842

    Article  CAS  Google Scholar 

  11. Kastl A, Wilbuer A, Merkel AL, Feng L, Fazio PD, Ocker M, Meggers E (2011) Chem Commun 48:1863–1865

    Article  Google Scholar 

  12. Li Y, Tan CP, Zhang W, He L, Ji LN, Mao ZW (2015) Biomaterials 39:95–104

    Article  PubMed  CAS  Google Scholar 

  13. Ye RR, Tan CP, Ji LN, Mao ZW (2016) Dalton Trans 45:13042–13051

    Article  PubMed  CAS  Google Scholar 

  14. He L, Li Y, Tan CP, Ye RR, Ji LN, Mao ZW (2015) Chem Sci 6:5409–5418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Tang B, Wan D, Wang YJ, Yi QY, Guo BH, Liu YJ (2018) Eur J Med Chem 145:302–314

    Article  PubMed  CAS  Google Scholar 

  16. Yi QY, Wan D, Tang B, Wang YJ, Zhang WY, Du F, He M, Liu YJ (2018) Eur J Med Chem 145:338–349

    Article  PubMed  CAS  Google Scholar 

  17. Zhang WY, Yi QY, Wang YJ, Du F, He M, Tang B, Wan D, Liu YJ, Huang HL (2018) Eur J Med Chem 151:568–584

    Article  PubMed  CAS  Google Scholar 

  18. Wan D, Tang B, Wang YJ, Guo BH, Yin H, Yi QY, Liu YJ (2017) Eur J Med Chem 139:180–190

    Article  PubMed  CAS  Google Scholar 

  19. Song XD, Kong X, He SF, Chen JX, Sun J, Chen BB, Zhao JW, Mao ZW (2017) Eur J Med Chem 138:246–254

    Article  PubMed  CAS  Google Scholar 

  20. Mou ZD, Deng N, Zhang F, Zhang JY, Cen J, Zhang X (2017) Eur J Med Chem 138:72–82

    Article  PubMed  CAS  Google Scholar 

  21. Zhang C, Lai SH, Yang HH, Xing DG, Zeng CC, Tang B, Wan D, Liu YJ (2017) RSC Adv 7:17752–17762

    Article  CAS  Google Scholar 

  22. Henze K, Martin W (2012) Nature 426:127–128

    Article  CAS  Google Scholar 

  23. McBride HM, Neuspiel M, Wasiak S (2006) Curr Biol 16:R551–R560

    Article  PubMed  CAS  Google Scholar 

  24. Youle RJ, Narendra DP (2011) Nat Rev Mol Cell Biol 12:9–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zeng L, Chen Y, Liu J, Huang H, Guan R, Ji L, Chao H (2016) Sci Rep 6:19449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Repnik U, Turk B (2010) Mitochondrion 10:662–669

    Article  PubMed  CAS  Google Scholar 

  27. Reich M, Van Swieten PF, Sommandas V, Kraus M, Fischer R, Weber E, Kalbacher H, Overkleeft HS, Driessen C (2007) J Leukoc Biol 81:990–1001

    Article  PubMed  CAS  Google Scholar 

  28. Guicciardi ME, Leist M, Gores GJ (2004) Oncogene 23:2881–2890

    Article  PubMed  CAS  Google Scholar 

  29. Ghosh M, Carlsson F, Laskar A, Yuan X, Li W (2011) FEBS Lett 585:623–629

    Article  PubMed  CAS  Google Scholar 

  30. Verhey KJ, Gaertig J (2007) Cell Cycle 6:2152–2160

    Article  PubMed  CAS  Google Scholar 

  31. Lin GJ, Jiang GB, Xie YY, Huang HL, Liang ZH, Liu YJ (2013) J Biol Inorg Chem 18:873–882

    Article  PubMed  CAS  Google Scholar 

  32. Case FH (1968) J Heterocycl Chem 5:223–226

    Article  CAS  Google Scholar 

  33. Sprouse S, King KA, Spellane PJ, Watts RJ (1984) J Am Chem Soc 106:6647–6653

    Article  CAS  Google Scholar 

  34. Mosmann T (1983) J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  35. Case FH (1968) J Heterocycl Chem 5:223–226

    Article  CAS  Google Scholar 

  36. Boya P, Kroemer G (2008) Oncogene 27:6434–6451

    Article  PubMed  CAS  Google Scholar 

  37. Chang Y, Li Y, Ye N, Guo X, Li Z, Sun G, Sun Y (2016) Apoptosis 21:977–996

    Article  PubMed  CAS  Google Scholar 

  38. Rin Jean S, Tulumello DV, Wisnovsky SP, Lei EK, Pereira MP, Kelley SO (2014) ACS Chem Biol 9:323–333

    Article  PubMed  CAS  Google Scholar 

  39. Ly JD, Grubb D, Lawen A (2003) Apoptosis 8:115–128

    Article  PubMed  CAS  Google Scholar 

  40. Lee S, Chen X (2011) Chem Bio Chem 12:2120–2121

    Article  PubMed  CAS  Google Scholar 

  41. Chen LB (1988) Annu Rev Cell Biol 4:155–181

    Article  PubMed  CAS  Google Scholar 

  42. Nicholls DG, Ward MW (2000) Trends Neurosci 3:166–174

    Article  Google Scholar 

  43. Trachootham D, Alexandre J, Huang P (2009) Nat Rev Drug Discov 8:579–591

    Article  PubMed  CAS  Google Scholar 

  44. Ma XW, Zhang LH, Wang LR, Xue X, Sun JH, Wu Y, Zou GZ, Wu X, Wang PC, Wamer WG, Yin JJ, Zheng KY, Liang XJ (2012) ACS Nano 6:10486–10496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Carew JS, Nawrocki ST, Cleveland JL (2007) Autophagy 3:464–467

    Article  PubMed  CAS  Google Scholar 

  46. Biederbick A, Kern HF, Elsasser HP (1995) Eur J Cell Biol 66:3–14

    PubMed  CAS  Google Scholar 

  47. Doonan F, Cotter TG (2008) Methods 44:200–204

    Article  PubMed  CAS  Google Scholar 

  48. Bachand GD, Jain R, Ko R, Bouxsein NF, Van Delinder V (2018) Biomacromol 19:2401–2408

    Article  CAS  Google Scholar 

  49. Yuan ZG, Chen SP, Chen CJ, Chen JW, Chen CK, Dai QZ, Gao CM, Jiang YY (2017) Eur J Med Chem 138:1135–1146

    Article  PubMed  CAS  Google Scholar 

  50. Abdel-Rahman LH, Abu-Dief AM, Moustafa H, Hamdan SK (2017) Appl Organomet Chem 31:e3555

    Article  CAS  Google Scholar 

  51. Ravi V, Kamakshi D, Praveen KY, Vinoda RM, Rajender RM, Nagamani C, Ravi Ch, Suman ST, Mohan R, Satyanarayana S (2018) New J Chem 42:846–859

    Article  Google Scholar 

  52. Kumar VR, Nagababu P, Srinivas G, Rajender MR, Rani MV, Ravi M, Satyanarayana S (2017) J Coord Chem 70:3790–3809

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (No 21877018) and the Natural Science Foundation of Guangdong Province (No 2016A030313728).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiu-Zhen Wang or Yun-Jun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 458 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, QY., Zhang, WY., He, M. et al. Anticancer and antibacterial activity in vitro evaluation of iridium(III) polypyridyl complexes. J Biol Inorg Chem 24, 151–169 (2019). https://doi.org/10.1007/s00775-018-1635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1635-8

Keywords

Navigation