Skip to main content

Advertisement

Log in

Cu-BTC metal–organic framework as a biocompatible nanoporous carrier for chlorhexidine antibacterial agent

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Antibacterial materials are an essential part of modern life and many efforts have been made to find a new and effective type of them. In this study, chlorhexidine (CHX) was loaded on Cu-BTC metal–organic framework (MOF), that both of them are known to have antibacterial properties. The antibacterial properties of Cu-BTC, CHX and CHX@Cu-BTC were investigated against Gram-positive and Gram-negative bacteria. Agar well-diffusion method and MIC test showed that CHX@Cu-BTC has high antibacterial activity. Characterization methods, such as FT-IR, XRD, N2 adsorption–desorption isotherm, TGA, SEM, EDX, TEM and zeta potential, were employed to characterize their structures.

Graphical abstract

Cu-BTC MOF nanoparticles were synthesized and used as nanoporous carriers for chlorhexidine. The loading was about 10%, which was absorbed into the pores. Antibacterial activity was investigated against Gram-negative and Gram-positive bacteria by Agar well diffusion method and MIC (minimal inhibitory concentration) assay. The CHX@Cu-BTC had synergistic antibacterial activity of Cu-BTC and chlorhexidine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Patel MB, Patel SA, Ray A, Patel RM (2003) J Appl Polym Sci 89:895–900

    Article  CAS  Google Scholar 

  2. Zhuang W, Yuan D, Li JR, Luo Z, Zhou HC, Bashir S, Liu J (2012) Adv Healthcare Mater 1:225–238

    Article  CAS  Google Scholar 

  3. Jean S-S, Hsueh P-R, Lee W-S, Chang H-T, Chou M-Y, Chen I-S, Wang J-H, Lin C-F, Shyr J-M, Ko W-C (2010) Eur J Clin Microbiol Infect Dis 29:471–475

    Article  CAS  PubMed  Google Scholar 

  4. Dutta A, Pan Y, Liu J-Q, Kumar A (2021) Coord Chem Rev 445:214074

    Article  CAS  Google Scholar 

  5. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Nature 402:276

    Article  CAS  Google Scholar 

  6. Zhu B, Zong Z, Zhang X, Zhang D, Cui L, Bi C, Fan Y (2020) Appl Organomet Chem 34:e5518

    CAS  Google Scholar 

  7. Hu M-L, Razavi SAA, Piroozzadeh M, Morsali A (2020) Inorg Chem Front 7:1598–1632

    Article  CAS  Google Scholar 

  8. Gole B, Sanyal U, Banerjee R, Mukherjee PS (2016) Inorg Chem 55:2345–2354

    Article  CAS  PubMed  Google Scholar 

  9. Qin J-H, Xu P, Huang Y-D, Xiao L-Y, Lu W, Yang X-G, Ma L-F, Zang S-Q (2021) Chem Commun 57:8468–8471

    Article  CAS  Google Scholar 

  10. Wang L, Zheng M, Xie Z (2018) J Mater Chem B 6:707–717

    Article  CAS  PubMed  Google Scholar 

  11. Xie LS, Sun L, Wan R, Park SS, DeGayner JA, Hendon CH, Dinca M (2018) J Am Chem Soc 140:7411–7414

    Article  CAS  PubMed  Google Scholar 

  12. Cao X, Tan C, Sindoro M, Zhang H (2018) Chem Soc Rev 47:5997–5997

    Article  CAS  PubMed  Google Scholar 

  13. Abdollahi N, Razavi SAA, Morsali A, Hu M-L (2020) J Hazard Mater 387:121667

    Article  CAS  PubMed  Google Scholar 

  14. Esrafili L, Firuzabadi FD, Morsali A, Hu M-L (2021) J Hazard Mater 403:123696

    Article  CAS  PubMed  Google Scholar 

  15. Liu J-Q, Luo Z-D, Pan Y, Singh AK, Trivedi M, Kumar A (2020) Coord Chem Rev 406:213145

    Article  CAS  Google Scholar 

  16. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Ferey G, Morris RE, Serre C (2011) Chem Rev 112:1232–1268

    Article  PubMed  Google Scholar 

  17. Hinks NJ, McKinlay AC, Xiao B, Wheatley PS, Morris RE (2010) Microporous Mesoporous Mater 129:330–334

    Article  CAS  Google Scholar 

  18. Liu W, Pan Y, Zhong Y, Li B, Ding Q, Xu H, Qiu Y, Ren F, Li B, Muddassir M (2021) Chem Eng J 412:127899

    Article  CAS  Google Scholar 

  19. Qin J-H, Zhang H, Sun P, Huang Y-D, Shen Q, Yang X-G, Ma L-F (2020) Dalton Trans 49:17772–17778

    Article  CAS  PubMed  Google Scholar 

  20. Mortada B, Matar TA, Sakaya A, Atallah H (2017) Z Kara Ali, P Karam, M Hmadeh. Inorg Chem 56:4739–4744

    Article  Google Scholar 

  21. Lu X, Ye J, Zhang D, Xie R, Bogale RF, Sun Y, Zhao L, Zhao Q, Ning G (2014) J Inorg Biochem 138:114–121

    Article  CAS  PubMed  Google Scholar 

  22. Pu F, Liu X, Xu B, Ren J, Qu X (2012) Chem - Eur J 18:4322–4328

    Article  CAS  PubMed  Google Scholar 

  23. Au-Duong A-N, Lee C-K (2017) Mater Sci Eng C 76:477–482

    Article  CAS  Google Scholar 

  24. Chui SS-Y, Lo SM-F, Charmant JP, Orpen AG, Williams ID (1999) Science 283:1148–1150

    Article  CAS  PubMed  Google Scholar 

  25. Todaro M, Buscarino G, Sciortino L, Alessi A, Messina F, Taddei M, Ranocchiari M, Cannas M, Gelardi FM (2016) J Phys Chem C 120:12879–12889

    Article  CAS  Google Scholar 

  26. Santo CE, Quaranta D, Grass G (2012) Microbiologyopen 1:46–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Soltani S, Akhbari K, White J (2020) J Mol Struct 1214:128233

    Article  CAS  Google Scholar 

  28. Lange LE, Obendorf SK (2015) ACS Appl Mater Interfaces 7:3974–3980

    Article  CAS  PubMed  Google Scholar 

  29. Rodríguez HS, Hinestroza JP, Ochoa-Puentes C, Sierra CA, Soto CY (2014) J Appl Polym Sci 131:19

    Article  Google Scholar 

  30. Lucena FRS, de Araújo LC, Rodrigues MDD, da Silva TG, Pereira VR, Militão GC, Fontes DA, Rolim-Neto PJ, da Silva FF, Nascimento SC (2013) Biomed Pharmacother 67:707–713

    Article  CAS  PubMed  Google Scholar 

  31. Maki D, Alvarado C, Ringer M (1991) The Lancet 338:339–343

    Article  CAS  Google Scholar 

  32. Cortés ME, Sinisterra RD, Avila-Campos MJ, Tortamano N, Rocha RG (2001) J Inclusion Phenom Macrocyclic Chem 40:297–302

    Article  Google Scholar 

  33. Kovtun A, Kozlova D, Ganesan K, Biewald C, Seipold N, Gaengler P, Arnold WH, Epple M (2012) RSC Adv 2:870–875

    Article  CAS  Google Scholar 

  34. Gotthardt MA, Schoch R, Wolf S, Bauer M, Kleist W (2015) Dalton Trans 44:2052–2056

    Article  CAS  PubMed  Google Scholar 

  35. Cole M (1994) Biochem Syst Ecol 22:837–856

    Article  CAS  Google Scholar 

  36. Soltani S, Akhbari K, White J (2020) Polyhedron 176:114301

    Article  CAS  Google Scholar 

  37. Lin S, Liu X, Tan L, Cui Z, Yang X, Yeung KW, Pan H, Wu S (2017) ACS Appl Mater Interfaces 9:19248–19257

    Article  CAS  PubMed  Google Scholar 

  38. Gordon J, Kazemian H, Rohani S (2015) Mater Sci Eng C 47:172–179

    Article  CAS  Google Scholar 

  39. Motakef-Kazemi N, Shojaosadati SA, Morsali A (2014) Microporous Mesoporous Mater 186:73–79

    Article  CAS  Google Scholar 

  40. Emam HE, Darwesh OM, Abdelhameed RM (2018) Colloids Surf, B 165:219–228

    Article  CAS  Google Scholar 

  41. Greenstein G, Berman C, Jaffin R (1986) J Periodontol 57:370–377

    Article  CAS  PubMed  Google Scholar 

  42. Athanassiadis B, Abbott P, Walsh LJ (2007) Aust Dent J 52:S64–S82

    Article  CAS  PubMed  Google Scholar 

  43. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Int J Nanomed 7:6003

    Article  CAS  Google Scholar 

  44. Steinberg D, Heling I, Daniel I, Ginsburg I (1999) J Oral Rehabil 26:151–156

    Article  CAS  PubMed  Google Scholar 

  45. Zheng M, Liu S, Guan X, Xie Z (2015) ACS Appl Mater Interfaces 7:22181–22187

    Article  CAS  PubMed  Google Scholar 

  46. Soltani S, Akhbari K, White J (2021) Z Anorg Allg Chem 647:442–447

    Article  CAS  Google Scholar 

  47. Mao D, Hu F, Ji S, Wu W, Ding D, Kong D, Liu B (2018) Adv Mater 30:1706831

    Article  Google Scholar 

  48. Ogunsona EO, Muthuraj R, Ojogbo E, Valerio O, Mekonnen TH (2020) Appl Mater Today 18:100473

    Article  Google Scholar 

  49. Soltani S, Akhbari K, Phuruangrat A (2021) J Mol Struct 1225:129261

    Article  CAS  Google Scholar 

  50. Nabipour H, Soltani B, Nasab NA (2018) J Inorg Organomet Polym Mater 28:1206–1213

    Article  CAS  Google Scholar 

  51. Soomro NA, Wu Q, Amur SA, Liang H, Rahman AU, Yuan Q, Wei Y (2019) Colloids Surf, B 182:110364

    Article  CAS  Google Scholar 

  52. Soltani B, Nabipour H, Nasab NA (2018) J Inorg Organomet Polym Mater 28:1090–1097

    Article  CAS  Google Scholar 

  53. Esfahanian M, Ghasemzadeh MA, Razavian SMH (2019) Artif Cells, Nanomed. Biotechnol 47:2024–2030

    CAS  Google Scholar 

  54. Chowdhuri AR, Das B, Kumar A, Tripathy S, Roy S, Sahu SK (2017) Nanotechnology 28:095102

    Article  PubMed  Google Scholar 

  55. Nabipour H, Hossaini Sadr M, RezanejadeBardajee G (2017) J Coord Chem 70:2771–2784

    Article  CAS  Google Scholar 

  56. Bhardwaj N, Pandey SK, Mehta J, Bhardwaj SK, Kim K-H, Deep A (2018) Toxicol Res 7:931–941

    Article  CAS  Google Scholar 

  57. Firouzjaei MD, Shamsabadi AA, Sharifian M, Rahimpour A, Soroush M (2018) Adv Mater Interfaces 5:1701365

    Article  Google Scholar 

  58. Gallis DFS, Butler KS, Agola JO, Pearce CJ, McBride AA (2019) ACS Appl Mater Interfaces 11:7782–7791

    Article  Google Scholar 

  59. Unamuno X, Imbuluzqueta E, Salles F, Horcajada P, Blanco-Prieto M (2018) Eur J Pharm Biopharm 132:11–18

    Article  CAS  PubMed  Google Scholar 

  60. Naseri H, Sharifi A, Ghaedi M, Dashtian K, Khoramrooz SS, Manzouri L, Khosravani SA, Pezeshkpour V, Sadri F, Askarinia M (2018) Ultrason Sonochem 44:223–230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support of this investigation by the Iran National Science Foundation (INSF) under grant number 9800678 is gratefully acknowledged. The authors also would like to acknowledge the financial support of the University of Tehran for this research under grant number 01/1/389845.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Akhbari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 624 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, S., Akhbari, K. Cu-BTC metal–organic framework as a biocompatible nanoporous carrier for chlorhexidine antibacterial agent. J Biol Inorg Chem 27, 81–87 (2022). https://doi.org/10.1007/s00775-021-01912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01912-5

Keywords

Navigation