Skip to main content
Log in

Fate of model complexes with monocopper center towards the functional properties of type 2 and type 3 copper oxidases

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Green colored mononuclear copper(II) complexes viz. [Cu(L)(bpy)](ClO4) (1) or [Cu(L)(phen)](ClO4) (2) (where H(L) is 2-((2-dimethylamino)ethyliminomethyl)naphthol) show distorted square pyramidal (4 + 1) geometry with CuN4O chromophore. The existence of self-assembled molecular associations indicates the formation of the dimer. Dimeric nature in solution is retained due to the binding of the substrate, encourages steric match between substrate and Cu(II) active site, which favors electron transfer. Interestingly, both the complexes exhibit high-positive redox potential. Therefore, the presence of self-assembled molecular association along with the positive redox potential enhances the catalytic oxidation of ascorbic acid to dehydroascorbic acid or benzylamine to benaldehyde or catechol to o-quinone thereby model the functional properties of type 2 and type 3 copper oxidases. Notably, catalytic activity is effective when compared with other reported mononuclear copper(II) complexes and even superior to many binuclear copper(II) complexes.

Graphic abstract

Existence of self-assembled molecular association in solution along with high-positive redox potential favors electron transfer process in mononuclear copper(II) complexes and models the functional properties of type 2 and type 3 copper oxidases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rolff M, Schottenheim J, Decker H, Tuczek F (2011) Copper–O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme. Chem Soc Rev 40:4077–4098. https://doi.org/10.1039/C0CS00202J

    Article  CAS  PubMed  Google Scholar 

  2. Friedle S, Reisner E, Lippard SJ (2010) Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem Soc Rev 39:2768–2779. https://doi.org/10.1039/C003079C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Que L Jr, Tolman WB (2008) Biologically inspired oxidation catalysis. Nature 455:333–340. https://doi.org/10.1038/nature07371

    Article  CAS  PubMed  Google Scholar 

  4. Casella L, Monzani E, Santagostini L, de Gioia L, Gullotti M, Fantucci P, Beringhelli T, Marchesini A (1999) Inhibitor binding studies on ascorbate oxidase. Coord Chem Rev 185–186:619–628. https://doi.org/10.1016/S0010-8545(99)00014-4

    Article  Google Scholar 

  5. Messerschmidt A, Ladenstein R, Huber R (1993) X-ray structures and mechanistic implications of three functional derivatives of ascorbate oxidase from zucchini: reduced, peroxide and azide forms. J Mol Biol 230:997–1014. https://doi.org/10.1006/jmbi.1993.1215

    Article  CAS  PubMed  Google Scholar 

  6. Klinman JP (1996) Mechanisms whereby mononuclear copper proteins functionalize organic substrates. Chem Rev 96:2541–2562. https://doi.org/10.1021/cr950047g

    Article  CAS  PubMed  Google Scholar 

  7. Parsons MR, Convery MA, Wilmot CM, Yadav KDS, Blakeley V, Corner AS, Phillips SEV, McPherson MJ, Knowles PF (1995) Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 Å resolution. Structure 3:1171–1184. https://doi.org/10.1016/S0969-2126(01)00253-2

    Article  CAS  PubMed  Google Scholar 

  8. Chang CM, Klema VJ, Johnson BJ, Mure M, Klinman JP, Wilmot CM (2010) Kinetic and structural analysis of substrate specificity in two copper amine oxidases from Hansenula polymorpha. Biochemistry 49:2540–2550. https://doi.org/10.1021/bi901933d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guell M, Siegbahn PEM (2007) Theoretical study of the catalytic mechanism of catechol oxidase. J Biol Inorg Chem 12:1251–1264. https://doi.org/10.1007/s00775-007-0293-z

    Article  CAS  PubMed  Google Scholar 

  10. Solomon EI, Sundaram UM, Machonkin TE (1996) Multicoper oxidase and oxygenases. Chem Rev 96:2563–2606. https://doi.org/10.1021/cr950046o

    Article  CAS  PubMed  Google Scholar 

  11. Koval IA, Gamez P, Belle C, Selmeczi K, Reedijk J (2006) Synthetic models of the active site of catechol oxidase: mechanistic studies. Chem Soc Rev 35:814–840. https://doi.org/10.1039/B516250P

    Article  CAS  PubMed  Google Scholar 

  12. Dey SK, Mukherjee A (2016) Catechol oxidase and phenoxazinone synthase: biomimetic functional models and mechanistic studies. Coord Chem Rev 310:80–115. https://doi.org/10.1016/j.ccr.2015.11.002

    Article  CAS  Google Scholar 

  13. Moradi-Shoeili Z, Amini Z, Boghaei DM, Notash B (2013) Synthesis, X-ray structure and ascorbic oxidation properties of ternary α-amino acid Schiff base-bipy Cu(II) complexes as functional models for ascorbic oxidase. Polyhedron 53:76–82. https://doi.org/10.1016/j.poly.2013.01.020

    Article  CAS  Google Scholar 

  14. Sathya V, Murali M (2018) Functional mimics of type-2 and type-3 copper oxidases: self-assembled molecular association in mononuclear copper(II) complex enhances the catalytic activity. Inorg Chem Commun 92:55–59. https://doi.org/10.1016/j.inoche.2018.04.003

    Article  CAS  Google Scholar 

  15. Banu KS, Mukherjee M, Guha A, Bhattacharya S, Zangrando E, Das D (2012) Dinuclear copper(II) complexes: solvent dependent catacholase activity. Polyhedron 45:245–254. https://doi.org/10.1016/j.poly.2012.06.087

    Article  CAS  Google Scholar 

  16. González-Sebastián L, Ugalde-Saldívar VM, Mijangos E, Mendoza-Quijano MR, Ortiz Frade L, Gasque L (2010) Solvent and pH effects on the redox behavior and catecholase activity of a dicopper complex with distant metal centers. J Inorg Biochem 104:1112–1118. https://doi.org/10.1016/j.jinorgbio.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  17. Addison AW, Rao TN, Reedijk J, Van Rijn J, Verschoor GC (1984) Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands: the crystal and molecular structure of aqua[l,7-bis(N-methyl- benzimidazol-2’-yl)-2,6-dithiaheptane]copper(II) perchlorate. J Chem Soc Dalton Trans. https://doi.org/10.1039/DT9840001349

    Article  Google Scholar 

  18. Velusamy M, Mayilmurugan R, Palaniandavar M (2004) Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties. Inorg Chem 43:6284–6293. https://doi.org/10.1021/ic049802b

    Article  CAS  PubMed  Google Scholar 

  19. Huang TH, Yang H, Yang G, Zhu SL, Zhang CL (2017) Synthesis, structural characterization and photoluminescent properties of copper(I) coordination polymers with extended C–H⋯π and CN⋯π interactions. Inorg Chim Acta 455:1–8. https://doi.org/10.1016/j.ica.2016.10.012

    Article  CAS  Google Scholar 

  20. Janiak C (2000) A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J Chem Soc Dalton Trans. https://doi.org/10.1039/B003010O

    Article  Google Scholar 

  21. Hathaway BJ (1987) Copper. Comprehensive coordination chemistry, 5th edn. Pergamon Press, Oxford, p 533

    Google Scholar 

  22. Lever ABP (1984) Inorganic electronic spectroscopy. Elsevier, Amsterdam. https://doi.org/10.1002/bbpc.19850890122

    Book  Google Scholar 

  23. Rybak-Akimova EV, Nazarenko AY, Chen L, Krieger PW, Herrera AH, Tarasov VV, Robinson PD (2001) Synthesis, characterization, redox properties and representative X-ray structures of four- and five-coordinate copper(II) complexes with polydentate aminopyridine ligands. Inorg Chim Acta 324:1–15. https://doi.org/10.1016/S0020-1693(01)00495-9

    Article  CAS  Google Scholar 

  24. Loganathan R, Ramakrishnan S, Suresh E, Riyasdeen A, Akbarsha MA, Palaniandavar M (2012) Mixed ligand copper(II) complexes of N, N-bis(benzimidazol-2-ylmethyl)amine (BBA) with diimine co-ligands: efficient chemical nuclease and protease activities and cytotoxicity. Inorg Chem 51:5512–5532. https://doi.org/10.1021/ic2017177

    Article  CAS  PubMed  Google Scholar 

  25. Turkkan E, Sayin U, Erbilen N, Pehlivanoglu S, Erdogan G, Tasdemir HU, Saf AO, Guler L, Akgemci EG (2017) Anticancer, antimicrobial, spectral, voltammetric and DFT studies with Cu(II) complexes of 2-hydroxy-5-methoxyacetophenone thiosemicarbazone and its N(4)-substituted derivatives. J Organomet Chem 831:23–35. https://doi.org/10.1016/j.jorganchem.2016.12.020

    Article  CAS  Google Scholar 

  26. Subramanian PS, Suresh E, Dastidar P, Waghmode S, Srinivas D (2001) Conformational isomerism and weak molecular and magnetic interactions in ternary copper(II) complexes of [Cu(AA)L′]ClO4.nH2O, where AA = l-phenylalanine and l-histidine, L′ = 1,10-phenanthroline and 2,2-bipyridine, and n = 1 or 1.5: synthesis, single-crystal X-ray structures and magnetic resonance investigations. Inorg Chem 40:4291–4301. https://doi.org/10.1021/ic010182d

    Article  CAS  PubMed  Google Scholar 

  27. Balamurugan R, Palaniandavar M, Stoeckli-Evans H, Neuburger M (2006) Axial versus equatorial coordination of thioether sulfur: mixed ligand copper(II) complexes of 2- pyridyl-N-(2′-methylthiophenyl)methyleneimine with bidentate diimine ligands. Inorg Chim Acta 359:1103–1113. https://doi.org/10.1016/j.ica.2005.09.062

    Article  CAS  Google Scholar 

  28. Wimalasena K, Dharmasena S (1994) Substrate specificity of ascorbate oxidase: unexpected to the reduction site of dopamine β-monooxygenase. Biochem Biophys Res Commun 203:1471–1476. https://doi.org/10.1006/bbrc.1994.2350

    Article  CAS  PubMed  Google Scholar 

  29. Itoh H, Hirota A, Hirayama K, Shin T, Murao S (1995) Properties of ascorbate oxidase produced by Acremonium sp. HI-25. Biosci Biotechnol Biochem 59:1052–1056. https://doi.org/10.1271/bbb.59.1052

    Article  CAS  Google Scholar 

  30. Smirnov VV, Roth JP (2006) Evidence for Cu–O2 intermediates in superoxide oxidations by biomimetic copper(II) complexes. J Am Chem Soc 128:3682–3695. https://doi.org/10.1021/ja056741n

    Article  CAS  Google Scholar 

  31. Reddy PAN, Nethaji M, Chakravarty AR (2002) Synthesis, crystal structures and properties of ternary copper(II) complexes having 2,2′-bipyridine and α-amino acid salicylaldiminates as models for the type-2 sites in copper oxidases. Inorg Chim Acta 337:450–458. https://doi.org/10.1016/S0020-1693(02)01108-8

    Article  CAS  Google Scholar 

  32. Klinman JP, Mu D (1994) Quinoenzymes in biology. Annu Rev Biochem 63:299–344. https://doi.org/10.1146/annurev.bi.63.070194.001503

    Article  CAS  PubMed  Google Scholar 

  33. Zippel F, Ahlers F, Werner R, Haase W, Nolting HF, Krebs B (1996) Structural and functional models for the dinuclear copper active site in catechol oxidases: syntheses, X-ray crystal structures, magnetic and spectral properties and X-ray absorption spectroscopic studies in solid state and in solution. Inorg Chem 35:3409–3419. https://doi.org/10.1021/ic9513604

    Article  CAS  PubMed  Google Scholar 

  34. Tsuruya S, Yanai SI, Masai M (1986) Cobalt(II) chelate catalyzed oxidation of 3,5-di-tert-butylcatechol. Inorg Chem 25:141–146. https://doi.org/10.1021/ic00222a009

    Article  CAS  Google Scholar 

  35. Monzani E, Battaini G, Perotti A, Casella L, Gullitti M, Santigostini L, Nardin G, Randaccio L, Geremia S, Zanello P, Opromolla G (1999) Mechanistic, structural, and spectroscopic studies on the catecholase activity of a dinuclear copper complex by dioxygen. Inorg Chem 38:5359–5369. https://doi.org/10.1021/ic990397b

    Article  CAS  Google Scholar 

  36. Yang C-T, Vetrichelvan M, Yang X, Moubaraki B, Murray KS, Vittal JJ (2004) Syntheses, structural properties and catecholase activity of copper(II) complexes with reduced Schiff base N-(2-hydroxybenzyl)amino acids. Dalton Trans. https://doi.org/10.1039/B310262A

    Article  PubMed  Google Scholar 

  37. Dey D, Das S, Yadav HR, Ranjani A, Gyathri L, Roy S, Guin PS, Dhanasekaran D, Choudhury AR, Akbarsha MA, Biswas B (2016) Design of a mononuclear copper(II)-phenanthroline complex: catechol oxidation, DNA cleavage and antitumor properties. Polyhedron 106:106–114. https://doi.org/10.1016/j.poly.2015.12.055

    Article  CAS  Google Scholar 

  38. Rey NA, Neves A, Bortoluzzi AJCT, Pich CT, Terenzi H (2007) Catalytic promiscuity in biomimetic systems: catecholase-like activity, phosphatase-like activity and hydrolytic DNA cleavage promoted by a new dicopper(II) hydroxo-bridged complex. Inorg Chem 46:348–350. https://doi.org/10.1021/ic0613107

    Article  CAS  PubMed  Google Scholar 

  39. Shyamal M, Mandal TK, Panja A, Saha A (2014) Influence of anionic co-ligands on the structural diversity and catecholase activity of copper(II) complexes with 2-methoxy-6-(8-iminoquinolinylmethyl)phenol. RSC Adv 4:53520–53530. https://doi.org/10.1039/C4RA08025D

    Article  CAS  Google Scholar 

  40. Merkel M, Mçller N, Piacenza M, Grimme S, Rompel A, Krebs B (2005) Less symmetrical dicopper(II) complexes as catechol oxidase models-an adjacent thioether group increases catecholase activity. Chem Eur J 11:1201–1209. https://doi.org/10.1002/chem.200400768

    Article  CAS  PubMed  Google Scholar 

  41. Terán A, Jaafar A, Sanchez-Pelaez AE, Torralba MC, Gutiérrez Á (2020) Design and catalytic studies of structural and functional models of the cataechol oxidase enzyme. J Biol Inorg Chem 25:1–13. https://doi.org/10.1007/s00775-020-01791-2

    Article  CAS  Google Scholar 

  42. Eicken C, Zippel F, Büldt-Karentzopoulos K, Krebs B (1998) Biochemical and spectroscopic characterization of catechol oxidase from sweet potatoes (Ipomoea batatas) containing a type-3 dicopper center 1. FEBS Lett 436:293–299. https://doi.org/10.1016/S0014-5793(98)01113-2

    Article  CAS  PubMed  Google Scholar 

  43. Subramanian PS, Suresh E, Dastidar P (2004) Model for type 2 Cu(II) oxidase: structure reactivity correlation studies on some mononuclear Cu(X-Salmeen)Im complexes, where X = H, Cl and Im = Imidazole: molecular association, electronic spectra and ascorbic oxidation. Polyhedron 23:2515–2522. https://doi.org/10.1016/j.poly.2004.08.020

    Article  CAS  Google Scholar 

  44. Altomare A, Cascarano G, Giacovazzo C, Guagliardi A (1993) Completion and refinement of crystal structures with SIR92. J Appl Crystallogr 26:343–350. https://doi.org/10.1107/S0021889892010331

    Article  Google Scholar 

  45. Sheldrick GM (2008) Crystal structure refinement with SHELXL. Acta Cryst Sect A 64:112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  46. Santra BK, Reddy PAN, Nethaji M, Chakravarty AR (2002) Structural model for the CuB site of dopamine β-hydroxylase: crystal structure of a copper(II) complex showing N3OS coordination with an axial sulfur ligation. Inorg Chem 41:1328–1332. https://doi.org/10.1021/ic010926n

    Article  CAS  PubMed  Google Scholar 

  47. Sathya V, Murali M (2019) Functional models for type-2 and type-3 copper oxidases: self-assembled molecular association in [Cu(L)(Hdpa)](ClO4) determines the catalytic activity. Inorg Chim Acta 496:119016. https://doi.org/10.1016/j.ica.2019.119016

    Article  CAS  Google Scholar 

  48. Naik AD, Reddy PAN, Nethaji M, Chakravarty AR (2003) Ternary copper(II) complexes of thiosemicarbazones and heterocyclic bases showing N3OS coordination as models for the type-2 centers of copper monooxygenases. Inorg Chim Acta 349:149–158. https://doi.org/10.1016/S0020-1693(03)00091-4

    Article  CAS  Google Scholar 

  49. Jiang D, Li X, Liu L, Yagnik GB, Zhou F (2010) Reaction and mechanism of the ascorbic acid oxidation by molecular oxygen facilitated by Cu(II)-containing amyloid-β complexes and aggregates. J Phys Chem B 114:4896–4903. https://doi.org/10.1021/jp9095375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reddy PAN, Datta R, Chakravarty AR (2000) Synthesis, X-ray structure and catalytic properties of a copper(II) Schiff base complex modeling the activity of the CuB site of dopamine β-hydroxylase. Inorg Chem Commun 3:322–324. https://doi.org/10.1016/S1387-7003(00)00083-6

    Article  CAS  Google Scholar 

  51. Chatterjee A, Yadav HR, Choudhury AR, Ali A, Singh Y, Ghosh R (2018) Tyrosinase and catecholase-like activities of a dinuclear Cu(II) complex. Polyhedron 141:140–146. https://doi.org/10.1016/j.poly.2017.11.040

    Article  CAS  Google Scholar 

  52. Ghosh AK, Ali A, Singh Y, Purohit CS, Ghosh R (2018) Synthesis, structural and magnetic characterizations of a dinuclear copper(II) complex with an (N, S, O) donor ligand: catecholase and phenoxazinone synthase activities. Inorg Chim Acta 474:156–163. https://doi.org/10.1016/j.ica.2018.02.004

    Article  CAS  Google Scholar 

  53. Santra A, Mondal G, Acharjya M, Bera P, Panja A, Mandal TK, Mitra P, Bera P (2016) Catechol oxidase mimetic activity of copper(I) complexes of 3,5-dimethylpyrazole derivatives: coordination behavior, X-ray crystallography and electrochemical study. Polyhedron 113:5–15. https://doi.org/10.1016/j.poly.2016.03.055

    Article  CAS  Google Scholar 

  54. Bhardwaj VK, Aliaga-Alcalde N, Corbella M, Hundal G (2010) Synthesis, crystal structure, spectral and magnetic studies and catecholase activity of copper(II) complexes with di- and tri-podal ligands. Inorg Chim Acta 363:97–106. https://doi.org/10.1016/j.ica.2009.09.041

    Article  CAS  Google Scholar 

  55. Mondal S, Chakraborty M, Mondal A, Pakhira B, Blake AJ, Sinn E, Chattopadhyay SK (2018) Cu(II) complexes of a tridentate N, N, O-donor Schiff base of pyridoxal: synthesis, X-ray structures, DNA-binding properties and catecholase activity. New J Chem 42:9588–9597. https://doi.org/10.1039/C8NJ00418H

    Article  CAS  Google Scholar 

  56. Adak P, Das C, Ghosh B, Mondal S, Pakhira B, Sinn E, Blake AJ, O’Connor AE, Chattopadhyay SK (2016) Two pseudohalide-bridged Cu(II) complexes bearing the anthracene moiety: synthesis, crystal structures and catecholase-like activity. Polyhedron 119:39–48. https://doi.org/10.1016/j.poly.2016.08.015

    Article  CAS  Google Scholar 

  57. Neves A, Rossi LM, Bortoluzzi AJ, Szpoganicz B, Wiezbicki C, Schwingel E (2002) Catecholase activity of a series of dicopper(II) complexes with variable Cu–OH(phenol) moieties. Inorg Chem 41:1788–1794. https://doi.org/10.1021/ic010708u

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Science and Engineering Research Board, New Delhi (Grant No. EMR/2016/007756) for the financial support. Thanks are due to STIC, Cochin University of Science and Technology for X-ray crystal structure data. We thank SAIF, Indian Institute of Technology Madras for structure solution and refinement and for recording EPR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariappan Murali.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murali, M., Sathya, V. & Selvakumaran, B. Fate of model complexes with monocopper center towards the functional properties of type 2 and type 3 copper oxidases. J Biol Inorg Chem 26, 67–79 (2021). https://doi.org/10.1007/s00775-020-01837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01837-5

Keyword

Navigation