Skip to main content
Log in

Functional implications of the interaction between HscB and IscU in the biosynthesis of FeS clusters

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In bacteria, HscB is the cochaperone of HscA in modulating the transfer of 2Fe2S clusters from a cluster-loaded form of the scaffold protein IscU to acceptor apoproteins. HscB binding to the IscU apoform (apoIscU) reportedly impairs the structural flexibility of apoIscU, but the effects of HscB on cluster formation on IscU have never been assessed. We report that presence of HscB impaired the rate—but not the equilibrium—of the appearance of the distinctive circular dichroism signals associated with formation of a stable 2Fe–2S cluster on IscU in reconstitution experiments. This impairment: (1) was independent of the source of cluster sulfide; (2) was not observed for HscB mutants unable to bind IscU; (3) implied formation of a 1/1 HscB/IscU complex; (4) was not observed for a D39A mutant of IscU, with a much more rigid structure than wt IscU. The cluster species assembled on IscU in the presence of HscB were transferred to apoferredoxin at a slower rate than those formed in the absence of HscB, unless ATP and HscA were also present. At contrast, HscB was found to improve the “catalytic” function of IscU with respect to cluster assembly in the presence of a large apoferredoxin excess. Thus, the HscB/IscU interaction may modulate formation and transfer of FeS clusters by accelerating cluster biosynthesis when appropriate target apoproteins are abundant or by slowing it down when the rate of apoprotein synthesis is slow, and cluster-loaded IscU is more likely to play a role as a “FeS storage” protein.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

TD buffer:

0.1 M Tris–HCl, pH 8.0, 5 mM dithiothreitol

TDMK buffer:

0.1 M Tris–HCl, pH 8.0, 5 mM dithiothreitol, 10 mM MgCl2, 150 mM KCl

References

  1. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Annu Rev Biochem 74:247–281

    Article  CAS  PubMed  Google Scholar 

  2. Rouault TA, Tong WH (2005) Nat Rev Mol Cell Biol 6:345–351

    Article  CAS  PubMed  Google Scholar 

  3. Ayala-Castro C, Saini A, Outten FW (2008) Microbiol Mol Biol Rev 72:110–1125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Raulfs EC, O’Carroll IP, Dos Santos PC, Unciuleac M-C, Dean DR (2008) Proc Natl Acad Sci 105:8591–8596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Unciuleac MC, Chandramouli K, Naik S, Mayer S, Huynh BH, Johnson MK, Dean DR (2007) Biochemistry 46:6812–6821

    Article  CAS  PubMed  Google Scholar 

  6. Bonomi F, Iametti S, Morleo A, Ta DT, Vickery LE (2008) Biochemistry 47:12795–12801

    Article  CAS  PubMed  Google Scholar 

  7. Shakamuri P, Zhang B, Johnson MK (2012) J Am Chem Soc 134:15213–15216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bonomi F, Iametti S, Morleo A, Ta DT, Vickery LE (2011) Biochemistry 50:9641–9650

    Article  CAS  PubMed  Google Scholar 

  9. Chandramouli K, Unciuleac M-C, Naik S, Dean DR, Huynh BH, Johnson MK (2007) Biochemistry 46:6804–6811

    Article  CAS  PubMed  Google Scholar 

  10. Ewen KM, Hannemann F, Iametti S, Morleo A, Bernhardt R (2011) J Mol Biol 413:940–951

    Article  CAS  PubMed  Google Scholar 

  11. Mapolelo DT, Zhang B, Naik SG, Huynh BH, Johnson MK (2012) Biochemistry 51:8071–8084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Leaden L, Busi MV, Gomez-Casati DF (2014) Mitochondrion 19:375–381

    Article  CAS  PubMed  Google Scholar 

  13. Maio N, Rouault TA (2015) Biochim Biophys Acta Mol Cell Res 1853:1493–1512

    Article  CAS  Google Scholar 

  14. Ciesielski SJ, Schilke BA, Osipiuk J, Bigelow L, Mulligan R, Majewska J, Joachimiak A, Marszalek J, Craig EA, Dutkiewicz R (2012) J Mol Biol 417:1–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Johnson DC, Unciuleac MC, Dean DR (2006) J Bacteriol 188:7551–7561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Fuzery AK, Tonelli M, Ta DT, Cornilescu G, Vickery LE, Markley JL (2008) Biochemistry 47:9394–9404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Fuzery AK, Oh JJ, Ta DT, Vickery LE, Markley JL (2011) BMC Biochem. doi:10.1186/1471-2091-12-3

    PubMed Central  PubMed  Google Scholar 

  18. Vickery LE, Cupp-Vickery JR (2007) Crit Rev Biochem Mol Biol 42:95–111

    Article  CAS  PubMed  Google Scholar 

  19. Kim JH, Tonelli M, Frederick RO, Chow DCF, Markley JL (2012) J Biol Chem 287:31406–31413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kim JH, Tonelli M, Markley JL (2012) Proc Nat Acad Sci 109:454–459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Markley JL, Kim JH, Dai ZQ, Bothe JR, Cai K, Frederick RO, Tonelli M (2013) FEBS Lett 587:1172–1179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bonomi F, Iametti S, Ta DT, Vickery LE (2005) J Biol Chem 280:29513–29518

    Article  CAS  PubMed  Google Scholar 

  23. Adinolfi S, Iannuzzi C, Prischi F, Pastore C, Iametti S, Martin S, Bonomi F, Pastore A (2009) Nat Struct Mol Biol 16:390–396

    Article  CAS  PubMed  Google Scholar 

  24. Hoff KG, Silberg JJ, Vickery LE (2000) Proc Natl Acad Sci 97:7790–7795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ta DT, Vickery LE (1992) J Biol Chem 267:11120–11125

    CAS  PubMed  Google Scholar 

  26. Vickery LE, Silberg JJ, Ta T (1997) Protein Sci 6:1047–1056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kim JH, Füzéry AK, Tonelli M, Ta DT, Westler WM, Vickery LE, Markley JL (2009) Biochemistry 48:6062–6071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Agar JN, Zheng L, Cash VL, Dean DR, Johnson MK (2000) J Am Chem Soc 122:2136–2137

    Article  CAS  Google Scholar 

  29. Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR, Johnson MK (2000) Biochemistry 39:7856–7862

    Article  CAS  PubMed  Google Scholar 

  30. Urbina HD, Silberg JJ, Hoff KG, Vickery LE (2001) J Biol Chem 276:44521–44526

    Article  CAS  PubMed  Google Scholar 

  31. Cai K, Frederick RO, Kim JH, Reinen NM, Tonelli M, Markley JL (2013) J Biol Chem 288:28755–28770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Majewska J, Ciesielski SJ, Schilke B, Kominek J, Blenska A, Delewski W, Song JY, Marszalek J, Craig EA, Dutkiewicz R (2013) J Biol Chem 288:29134–29142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Bonomi F, Iametti S, Ta DT, Vickery LE (2005) Abstr. Comm. ICBIC 12, Ann Arbor, MI, USA, HEND-261

  34. Silberg JJ, Tapley TL, Hoff KG, Vickery LE (2004) J Biol Chem 279:53924–53931

    Article  CAS  PubMed  Google Scholar 

  35. Foster MW, Mansy SS, Hwang J, Penner-Hahn JE, Surerus KK, Cowan JA (2000) J Am Chem Soc 122:6805–6806

    Article  CAS  Google Scholar 

  36. Yan R, Kelly G, Pastore A (2014) Chem Biochem 15:1682–1686

    CAS  Google Scholar 

  37. Kim JH, Bothe JR, Alderson TR, Markley JL (2015) Biochim Biophys Acta Mol Cell Res 1853:1416–1428

    Article  CAS  Google Scholar 

  38. Rouault TA (2012) Dis Mod Mech 5:155–164

    Article  CAS  Google Scholar 

  39. Stehling O, Lill R (2013) CSH Perspect Med 3:1–17

    Google Scholar 

  40. Nordin A, Larsson E, Holmberg M (2012) Hum Mutat 33:467–470

    Article  CAS  PubMed  Google Scholar 

  41. Saha PP, Kumar SKP, Srivastava S, Sinha D, Pareek G, D’Silva P (2014) J Biol Chem 289:10359–10377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Maio N, Singh A, Uhrigshardt H, Saxena N, Tong WH, Rouault TA (2014) Cell Metab 19:445–454

    Article  CAS  PubMed  Google Scholar 

  43. Spiegel R, Saada A, Halvardson J, Soiferman D, Shaag A, Edvardson S, Horovitz Y, Khayat M, Shalev SA, Feuk L, Elpeleg O (2014) Eur J Hum Genet 22:902–906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Dr. Dennis D. Ta and to Prof. Larry E. Vickery, formerly at UC-Irvine, for providing most of the proteins used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bonomi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iametti, S., Barbiroli, A. & Bonomi, F. Functional implications of the interaction between HscB and IscU in the biosynthesis of FeS clusters. J Biol Inorg Chem 20, 1039–1048 (2015). https://doi.org/10.1007/s00775-015-1285-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1285-z

Keywords

Navigation