Skip to main content
Log in

Hydrogen bonding of the dissociated histidine ligand is not required for formation of a proximal NO adduct in cytochrome c’

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Cytochromes c’, that occur in methanotrophic, denitrifying and photosynthetic bacteria, form unusual proximal penta-coordinate NO complexes via a hexa-coordinate distal NO intermediate. Their NO binding properties are similar to those of the eukaryotic NO sensor, soluble guanylate cyclase, for which they provide a valuable structural model. Previous studies suggested that hydrogen bonding between the displaced proximal histidine (His120) ligand (following its dissociation from heme due to trans effects from the distally bound NO) and a conserved aspartate residue (Asp121) could play a key role in allowing proximal NO binding to occur. We have characterized three variants of Alcaligenes xylosoxidans cytochrome c’ (AXCP) where Asp121 has been replaced by Ala, Ile and Gln, respectively. In all variants, hydrogen bonding between residue 121 and His120 is abolished yet 5-coordinate proximal NO species are still formed. Our data therefore demonstrate that the His120–Asp121 bond is not essential for proximal NO binding although it likely provides an energy minimum for the displaced His ligand. All variants have altered proximal pocket structure relative to native AXCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

Abbreviations

CytCp:

Cytochrome c’

AXCP:

Alcaligenes xylosoxidans cytochrome c’

SFCP:

Shewanella frigidimarina cytochrome c’

SLS:

Swiss Light Source

5c:

5-Coordinate

6c:

6-Coordinate

References

  1. Romao MJ, Archer AM (2006) Handbook of Metalloproteins 1. Wiley, Hoboken

  2. Lawson DM, Stevenson CE, Andrew CR, Eady RR (2000) EMBO J 19:5661–5671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Andrew CR, Green EL, Lawson DM, Eady RR (2001) Biochemistry 40:4115–4122

    Article  CAS  PubMed  Google Scholar 

  4. Moir JW (1999) Biochim Biophys Acta 1430:65–72

    Article  CAS  PubMed  Google Scholar 

  5. Cross R, Aish J, Paston SJ, Poole RK, Moir JW (2000) J Bacteriol 182:1422–1447

    Article  Google Scholar 

  6. Martin E, Berka V, Sharina I, Tsai AL (2012) Biochemistry 51:2737–2746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Silkstone G, Kapetanaki SM, Husu I, Vos MH, Wilson MT (2010) J Biol Chem 285:19785–19792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Vicente JB, Colaço HG, Mendes MIS, Sarti P, Leandro P, Giuffrè A (2014) J Biol Chem 289:8579–8587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cutruzzolà F, Arcovito A, Giardina G, della Longa S, D’Angelo P, Rinaldo S (2014) Biometals 27:763–773

    Article  PubMed  Google Scholar 

  10. Andrew CR, George SJ, Lawson DM, Eady RR (2002) Biochemistry 41:2353–2360

    Article  CAS  PubMed  Google Scholar 

  11. Kruglik SG, Lambry JC, Cianetti S, Martin JL, Eady RR, Andrew CR, Negrerie M (2007) J Biol Chem 282:5053–5062

    Article  CAS  PubMed  Google Scholar 

  12. Marti MA, Capece L, Crespo A, Doctorovich F, Estrin DA (2005) J Am Chem Soc 127:7721–7728

    Article  CAS  PubMed  Google Scholar 

  13. Barbieri S, Murphy LM, Sawers RG, Eady RR, Hasnain SS (2008) J Biol Inorg Chem 13:531–540

    Article  CAS  PubMed  Google Scholar 

  14. Hough MA, Antonyuk SV, Barbieri S, Rustage N, McKay AL, Servid AE, Eady RR, Andrew CR, Hasnain SS (2011) J Mol Biol 405:395–409

    Article  CAS  PubMed  Google Scholar 

  15. Manole A, Kekilli D, Svistunenko DA, Wilson MT, Dobbin PS, Hough MA (2015) J Biol Inorg Chem 20:675–686

    Article  CAS  PubMed  Google Scholar 

  16. Antonyuk SV, Rustage N, Petersen CA, Arnst JL, Heyes DJ, Sharma R, Berry NG, Scrutton NS, Eady RR, Andrew CR, Hasnain SS (2011) Proc Natl Acad Sci USA 108:15780–15785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kekilli D, Dworkowski FS, Pompidor G, Fuchs MR, Andrew CR, Antonyuk S, Strange RW, Eady RR, Hasnain SS, Hough MA (2014) Acta Crystallogr D Biol Crystallogr 70:1289–1296

    Article  CAS  PubMed  Google Scholar 

  18. Arslan E, Schulz H, Zufferey R, Kunzler P, Thony-Meyer L (1998) Biochem Biophys Res Commun 251:744–747

    Article  CAS  PubMed  Google Scholar 

  19. Yoshimura T, Suzuki S, Nakahara A, Iwasaki H, Masuko M, Matsubara T (1986) Biochemistry 25:2436–2442

    Article  CAS  Google Scholar 

  20. Otwinowski Z, Minor W (1997) Method Enzymol 276:307–326

    Article  CAS  Google Scholar 

  21. Vagin A, Teplyakov A (2010) Acta Crystallogr D Biol Crystallogr 66:22–25

    Article  CAS  PubMed  Google Scholar 

  22. Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr D Biol Crystallogr 53:240–255

    Article  CAS  PubMed  Google Scholar 

  23. Potterton E, Briggs P, Turkenburg M, Dodson E (2003) Acta Crystallogr D Biol Crystallogr 59:1131–1137

    Article  PubMed  Google Scholar 

  24. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  26. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB 3rd, Snoeyink J, Richardson JS, Richardson DC (2007) Nucleic Acids Res 35:W375–W383

    Article  PubMed Central  PubMed  Google Scholar 

  27. Sheldrick G (2008) Acta Crystallogr A 64:112–122

    Article  CAS  PubMed  Google Scholar 

  28. Pompidor G, Dworkowski FSN, Thominet V, Schulze-Briese C, Fuchs MR (2013) J Synchrotron Radiat 20:765–776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Dworkowski FS, Hough MA, Pompidor G, Fuchs MR (2015) Acta Crystallogr D Biol Crystallogr 71:27–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Yoshimura T, Fujii S, Kamada H, Yamaguchi K, Suzuki S, Shidara S, Takakuwa S (1996) Biochim Biophys Acta 1292:39–46

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

D.K. was supported by a School Studentship at the University of Essex. X-ray diffraction data were measured at the Swiss Light Source under long-term award 20111166 to M.H. and funded in part via BioStructX award 2370 to M.H & R.W.S. R.W.S acknowledges financial support from a Wellcome Trust Fellowship Award. We acknowledge the assistance of Dr Svetlana Antonyuk for assistance in the use of Shelx for esd determination, Dr Andrey Lebedev with restraint libraries in refinement and Alex Chivu for assistance with protein preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Hough.

Additional information

D. D. Ghafoor and D. Kekilli contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 460 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafoor, D.D., Kekilli, D., Abdullah, G.H. et al. Hydrogen bonding of the dissociated histidine ligand is not required for formation of a proximal NO adduct in cytochrome c’. J Biol Inorg Chem 20, 949–956 (2015). https://doi.org/10.1007/s00775-015-1278-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1278-y

Keywords

Navigation