Skip to main content
Log in

Identifying sequence determinants of reduction potentials of metalloproteins

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The reduction potential of an electron transfer protein is one of its most important functional characteristics. Although the type of redox site and the protein fold are the major determinants of the reduction potential of a redox-active protein, its amino acid sequence may tune the reduction potential as well. Thus, homologous proteins can often be divided into different classes, with each class characterized by a biological function and a reduction potential. Site-specific mutagenesis of the sequence determinants of the differences in the reduction potential between classes should change the reduction potential of a protein in one class to that of the other class. Here, a procedure is presented that combines energetic and bioinformatic analysis of homologous proteins to identify sequence determinants that are also good candidates for site-specific mutations, using the [4Fe–4S] ferredoxins and the [4Fe–4S] high-potential iron–sulfur proteins as examples. This procedure is designed to guide site-specific mutations or more computationally expensive studies, such as molecular dynamics simulations. To make the procedure more accessible to the general scientific community, it is being implemented into CHARMMing, a Web-based portal, with a library of density functional theory results for the redox site that are used in the setting up of Poisson–Boltzmann continuum electrostatics calculations for the protein energetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perrin BS Jr, Ichiye T (2010) Proteins 78:2798

    Article  CAS  Google Scholar 

  2. Ichiye T (2001) In: Becker O, MacKerell JA, Roux B, Watanabe M (eds) Computational biochemistry and biophysics. Dekker, New York, p 393

  3. Langen R, Jensen GM, Jacob U, Stephens PJ, Warshel A (1992) J Biol Chem 267:25625

    PubMed  CAS  Google Scholar 

  4. Gunner MR, Honig B (1991) Proc Natl Acad Sci USA 88:9151

    Article  PubMed  CAS  Google Scholar 

  5. Swartz PD, Beck BW, Ichiye T (1996) Biophys J 71:2958

    Article  PubMed  CAS  Google Scholar 

  6. Beck BW, Xie Q, Ichiye T (2001) Biophys J 81:601

    Article  PubMed  CAS  Google Scholar 

  7. Warshel A, Papazyan A, Muegge I (1997) J Biol Inorg Chem 2:143

    Article  CAS  Google Scholar 

  8. Zeng Q, Smith ET, Kurtz DM, Scott RA (1996) Inorg Chim Acta 242:245

    Article  CAS  Google Scholar 

  9. Stephens PJ, Jollie DR, Warshel A (1996) Chem Rev 96:2491

    Article  PubMed  CAS  Google Scholar 

  10. Chen K, Tilley GJ, Sridhar V, Prasad GS, Stout CD, Armstrong FA, Burgess BK (1999) J Biol Chem 274:36479

    Article  PubMed  CAS  Google Scholar 

  11. Eidsness MK, Burden AE, Richie KA, Kurtz DMJ, Scott RA, Smith ET, Ichiye T, Beard B, Min T, Kang C (1999) Biochemistry 38:14803

    Article  PubMed  CAS  Google Scholar 

  12. Iismaa SE, Vazquez AE, Jensen GM, Stephens PJ, Butt JN, Armstrong FA, Burgess BK (1991) J Biol Chem 266:21563

    PubMed  CAS  Google Scholar 

  13. Kümmerle R, Gaillard J, Kyritsis P, Moulis J-M (2001) J Biol Inorg Chem 6:446

    Article  PubMed  Google Scholar 

  14. Noodleman L, Case DA (1992) In: Richard C (ed) Iron-sulphur proteins. Advances in inorganic chemistry, vol 38. Academic, San Diego, p 423

  15. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  16. Mouesca JM, Chen JL, Noodleman L, Bashford D, Case DA (1994) J Am Chem Soc 116:11898

    Article  CAS  Google Scholar 

  17. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  PubMed  CAS  Google Scholar 

  18. Perrin BS Jr, Niu S, Ichiye T (2013) J Comput Chem 34:576

    Article  PubMed  CAS  Google Scholar 

  19. Niu S, Ichiye T (2011) Mol Simul 37:572

    Article  CAS  Google Scholar 

  20. Zhai H, Yang X, Fu Y, Wang X, Wang L (2004) J Am Chem Soc 126:8413

    Article  PubMed  CAS  Google Scholar 

  21. Fu Y-J, Yang X, Wang X, Wang L-S (2004) Inorg Chem 43:3647

    Article  PubMed  CAS  Google Scholar 

  22. Wang XB, Wang LS (2000) J Phys Chem 112:6959

    Article  CAS  Google Scholar 

  23. Meyer J (2008) J Biol Inorg Chem 13:157

    Article  PubMed  CAS  Google Scholar 

  24. Stombaugh NA, Sundquist JE, Burris RH, Orme-Johnson WH (1976) Biochemistry 15:2633

    Article  PubMed  CAS  Google Scholar 

  25. Giastas P, Pinotsis N, Efthymiou G, Wilmanns M, Kyritsis P, Moulis J-M, Mavridis IM (2006) J Biol Inorg Chem 11:445

    Article  PubMed  CAS  Google Scholar 

  26. Luchinat C, Capozzi F, Borsari M, Battistuzzi G, Sola M (1994) Biochem Biophys Res Commun 203:436

    Article  PubMed  CAS  Google Scholar 

  27. Heering HA, Bulsink YBM, Hagen WR, Mayer TE (1995) Biochemistry 34:14675

    Article  PubMed  CAS  Google Scholar 

  28. Miller BT, Singh RP, Klauda JB, Hodoscek M, Brooks BR, Woodcock HL III (2008) J Chem Inf Model 48:1920

    Article  PubMed  CAS  Google Scholar 

  29. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235

    Article  PubMed  CAS  Google Scholar 

  30. Dauter Z, Wilson KS, Sieker LC, Meyer J, Moulis J-M (1997) Biochemistry 36:16065

    Article  PubMed  CAS  Google Scholar 

  31. Backes G, Mino Y, Loehr TM, Meyer TE, Cusanovich MA, Sweeney WV, Adman ET, Sanders-Loehr J (1991) J Am Chem Soc 113:2055

    Article  CAS  Google Scholar 

  32. Moulis JM, Sieker LC, Wilson KS, Dauter Z (1996) Protein Sci 5:1765

    Article  PubMed  CAS  Google Scholar 

  33. Rayment I, Wesenberg G, Meyer TE, Cusanovich MA, Holden HM (1992) J Mol Biol 228:672

    Article  PubMed  CAS  Google Scholar 

  34. Gonzalez A, Benini S, Ciurli S (2003) Acta Crystallogr Sect D Biol Crystallogr 59:1582

    Article  Google Scholar 

  35. Benning MM, Meyer TE, Rayment I, Holden HM (1994) Biochemistry 33:2476

    Article  PubMed  CAS  Google Scholar 

  36. Breiter DR, Meyer TE, Rayment I, Holden HM (1991) J Biol Chem 266:18660

    PubMed  CAS  Google Scholar 

  37. Liu L, Nogi T, Kobayashi M, Nozawa T, Miki K (2002) Acta Crystallogr Sect D Biol Crystallogr D 58:1085

    Article  Google Scholar 

  38. Parisini E, Capozzi F, Lubini P, Lamzin V, Luchinat C, Sheldrick G (1999) Acta Crystallogr Sect D 55:1773

    Article  CAS  Google Scholar 

  39. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) Comput Phys Commun 181:1477

    Article  CAS  Google Scholar 

  40. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Proc Natl Acad Sci USA 98:10037

    Article  PubMed  CAS  Google Scholar 

  41. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586

    Article  CAS  Google Scholar 

  42. Connolly ML (1983) Science 221:709

    Article  PubMed  CAS  Google Scholar 

  43. Perrin BS Jr, Ichiye T (2013) J Biol Inorg Chem 18:103

    Article  PubMed  CAS  Google Scholar 

  44. Van Driessche G, Vandenberghe I, Devreese B, Samyn B, Meyer TE, Leigh R, Cusanovich MA, Bartsch RG, Fischer U, Beeumen JJV (2003) J Mol Evol 57:181

    Article  PubMed  Google Scholar 

  45. Fajardo MJ (2004) Computational studies of iron-sulfur electron transfer proteins. Unpublished M.S. Thesis. Washington State University

  46. Kyritsis P, Hatzfeld OM, Link TA, Moulis J-M (1998) J Biol Chem 273:15404

    Article  PubMed  CAS  Google Scholar 

  47. Bertini I, Gori-savellini G, Luchinat C (1997) J Biol Inorg Chem 2:114

    Article  CAS  Google Scholar 

  48. Hochkoeppler A, Ciurli S, Venturoli G, Zannoni D (1995) FEBS Lett 357:70

    Article  PubMed  CAS  Google Scholar 

  49. Moulis JM, Davasse V (1995) Biochemistry 34:16781

    Article  PubMed  CAS  Google Scholar 

  50. Battistuzzi G, Mariapina D, Borsari M, Sola M, Macedo A, Moura J, Pedro R (2000) J Biol Inorg Chem 5:748

    Article  PubMed  CAS  Google Scholar 

  51. Clements AP, Kilpatrick L, Lu WP, Ragsdale SW, Ferry JG (1994) J Bacteriol 176:2689

    PubMed  CAS  Google Scholar 

  52. Daas P, Hagen W, Keltjens J, Vogels G (1994) FEBS Lett 356:342

    Article  PubMed  CAS  Google Scholar 

  53. Gao-Sheridan H, Pershad H, Armstrong F, Burgess B (1998) J Biol Inorg Chem 273:5514

    Article  CAS  Google Scholar 

  54. Boll M, Fuchs G, Tilley G, Armstrong FA, Lowe DJ (2000) Biochemistry 39:4929

    Article  PubMed  CAS  Google Scholar 

  55. Saeki K, Tokuda K, Fukuyama K, Matsubara H, Nadanami K, Go M, Itoh S (1996) J Biol Chem 271:31399

    Google Scholar 

  56. Przysiecki CT, Meyer TE, Cusanovich MA (1985) Biochemistry 24:2542

    Article  PubMed  CAS  Google Scholar 

  57. Banci L, Bertini I, Capozzi F, Carloni P, Ciurli S, Luchinat C, Piccioli M (1993) J Am Chem Soc 115:3431

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Institutes of Health (GM0453030) and by the Intramural Research Program of the National Institutes of Health, National Heart, Lung, and Blood Institute in the Laboratory of Computational Biology (Z99-TW999999-03). The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the US Government. The continuum electrostatic calculations were performed using computers funded through the William G. McGowan Foundation and Georgetown University. Both authors thank Kelly N. Tran and Mingliang Tan for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiko Ichiye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrin, B.S., Ichiye, T. Identifying sequence determinants of reduction potentials of metalloproteins. J Biol Inorg Chem 18, 599–608 (2013). https://doi.org/10.1007/s00775-013-1004-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1004-6

Keywords

Navigation