Skip to main content
Log in

Heterometallic [AgFe3S4] ferredoxin variants: synthesis, characterization, and the first crystal structure of an engineered heterometallic iron–sulfur protein

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Heterometallic [AgFe3S4] iron–sulfur clusters assembled in wild-type Pyrococcus furiosus ferredoxin and two variants, D14C and D14H, are characterized. The crystal structure of the [AgFe3S4] D14C variant shows that the silver(I) ion is indeed part of the cluster and is coordinated to the thiolate group of residue 14. Cyclic voltammetry shows one redox pair with a reduction potential of +220 mV versus the standard hydrogen electrode which is assigned to the [AgFe3S4]2+/+ couple. The oxidized form of the [AgFe3S4] D14C variant is stable in the presence of dioxygen, whereas the oxidized forms of the [AgFe3S4] wild type and D14H variants convert to the [Fe3S4] ferredoxin form. The monovalent d 10 silver(I) ion stabilizes the [Fe3S4]+/0 cluster fragment, as opposed to divalent d 10 metal ions, resulting in more than 0.4 V difference in reduction potentials between the silver(I) and, e.g., zinc(II) heterometallic [MFe3S4] ferredoxins. The trend in reduction potentials for the variants containing the [AgFe3S4] cluster is wild type ≤ D14C < D14H and shows the same trend as reported for the variants containing the [Fe3S4] cluster, but is different from the D14C < D14H < wild type trend reported for the [Fe4S4] ferredoxin. The similarity in the reduction potential trend for the variants containing the heterometallic [AgFe3S4] cluster and the [Fe3S4] cluster can be rationalized in terms of the electrostatic influence of the residue 14 side chains, rather than the dissociation constant of this residue, as is the case for [Fe4S4] ferredoxins. The trends in reduction potentials are in line with there being no electronic coupling between the silver(I) ion and the Fe3S4 fragment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Fe–S:

Iron–sulfur

PDB:

Protein Data Bank

RMSD:

Root mean square deviation

SHE:

Standard hydrogen electrode

Tris/HCl:

Tris(hydroxymethyl)aminoethane titrated with HCl

References

  1. Rees DC (2002) Annu Rev Biochem 71:221–246

    Article  PubMed  CAS  Google Scholar 

  2. Meyer J (2008) J Biol Inorg Chem 13:157–170

    Article  PubMed  CAS  Google Scholar 

  3. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Annu Rev Biochem 74:247–281

    Article  PubMed  CAS  Google Scholar 

  4. Bian SM, Cowan JA (1999) Coord Chem Rev 192:1049–1066

    Article  Google Scholar 

  5. Johnson MK, Smith AD (2006) Encyclopedia of inorganic chemistry. Wiley, New York, pp 1–31

    Google Scholar 

  6. Lovgreen MN, Martic M, Windahl MS, Christensen HEM, Harris P (2011) J Biol Inorg Chem 16:763–775

    Article  PubMed  CAS  Google Scholar 

  7. Fukuyama K, Matsubara H, Tsukihara T, Katsube Y (1989) J Mol Biol 210:383–398

    Article  PubMed  CAS  Google Scholar 

  8. Hannan JP, Busch JLH, Breton J, James R, Thomson AJ, Moore GR, Davy SL (2000) J Biol Inorg Chem 5:432–447

    Article  PubMed  CAS  Google Scholar 

  9. Moura JJG, Macedo AL, Palma PN (1994) Inorg Microb Sulfur Metab 243:165–188

    Article  CAS  Google Scholar 

  10. Rao PV, Holm RH (2004) Chem Rev 104:527–559

    Article  CAS  Google Scholar 

  11. Moulis JM, Davasse V, Golinelli MP, Meyer J, Quinkal I (1996) J Biol Inorg Chem 1:2–14

    Article  CAS  Google Scholar 

  12. Nielsen MS, Harris P, Ooi BL, Christensen HEM (2004) Biochemistry 43:5188–5194

    Article  PubMed  CAS  Google Scholar 

  13. Aono S, Bryant FO, Adams MWW (1989) J Bacteriol 171:3433–3439

    PubMed  CAS  Google Scholar 

  14. Conover RC, Kowal AT, Fu W, Park JB, Aono S, Adams MWW, Johnson MK (1990) J Biol Chem 265:8533–8541

    PubMed  CAS  Google Scholar 

  15. Fawcett SEJ, Davis D, Breton JL, Thomson AJ, Armstrong FA (1998) Biochem J 335:357–368

    PubMed  CAS  Google Scholar 

  16. Moura JJG, Moura I, Kent TA, Lipscomb JD, Huynh BH, Legall J, Xavier AV, Munck E (1982) J Biol Chem 257:6259–6267

    PubMed  CAS  Google Scholar 

  17. Moreno C, Macedo AL, Moura I, Legall J, Moura JJG (1994) J Inorg Biochem 53:219–234

    Article  PubMed  CAS  Google Scholar 

  18. Busch JLH, Breton JLJ, Bartlett BM, James R, Hatchikian EC, Thomson AJ (1996) Biochem J 314:63–71

    PubMed  CAS  Google Scholar 

  19. Fukuyama K (2006) Handbook of metalloproteins. Wiley, New York, pp 1–10

    Google Scholar 

  20. Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecillacamps JC (1995) Nature 373:580–587

    Article  PubMed  CAS  Google Scholar 

  21. Zhou ZH, Adams MWW (1997) Biochemistry 36:10892–10900

    Article  PubMed  CAS  Google Scholar 

  22. Busch JLH, Breton JL, Bartlett BM, Armstrong FA, James R, Thomson AJ (1997) Biochem J 323:95–102

    PubMed  CAS  Google Scholar 

  23. Calzolai L, Zhou ZH, Adams MWW, LaMar GN (1996) J Am Chem Soc 118:2513–2514

    Article  CAS  Google Scholar 

  24. Calzolai L, Gorst CM, Bren KL, Zhou ZH, Adams MWW, LaMar GN (1997) J Am Chem Soc 119:9341–9350

    Article  Google Scholar 

  25. Brereton PS, Verhagen MFJM, Zhou ZH, Adams MWW (1998) Biochemistry 37:7351–7362

    Article  PubMed  CAS  Google Scholar 

  26. Brereton PS, Duderstadt RE, Staples CR, Jonhson MK, Adams MWW (1999) Biochemistry 38:10594–10605

    Article  PubMed  CAS  Google Scholar 

  27. Duderstadt RE, Staples CR, Brereton PS, Adams MWW, Johnson MK (1999) Biochemistry 38:10585–10593

    Article  PubMed  CAS  Google Scholar 

  28. Iwasaki T, Kounosu A, Tao Y, Li Z, Shokes J, Cosper N, Imai T, Urushiyama A, Scott R (2005) J Biol Chem 280:9129–9134

    Article  PubMed  CAS  Google Scholar 

  29. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853–1858

    Article  PubMed  CAS  Google Scholar 

  30. Finnegan MG, Conover RC, Park JB, Zhou ZH, Adams MWW, Johnson MK (1995) Inorg Chem 34:5358–5369

    Article  CAS  Google Scholar 

  31. Busse SC, Lamar GN, Yu LPP, Howard JB, Smith ET, Zhou ZH, Adams MWW (1992) Biochemistry 31:11952–11962

    Article  PubMed  CAS  Google Scholar 

  32. Zhang JD, Christensen HEM, Ooi BL, Ulstrup J (2004) Langmuir 20:10200–10207

    Article  PubMed  CAS  Google Scholar 

  33. Jensen KP, Ooi B, Christensen HEM (2007) Inorg Chem 46:8710–8716

    Article  PubMed  CAS  Google Scholar 

  34. Koay MS, Antonkine ML, Gartner W, Lubitz W (2008) Chem Biodivers 5:1571–1587

    Article  PubMed  CAS  Google Scholar 

  35. Adman E, Watenpaugh KD, Jensen LH (1975) Proc Natl Acad Sci USA 72:4854–4858

    Article  PubMed  CAS  Google Scholar 

  36. Backes G, Mino Y, Loehr TM, Meyer TE, Cusanovich MA, Sweeney WV, Adman ET, Sanders-Loehr J (1991) J Am Chem Soc 113:2055–2064

    Article  CAS  Google Scholar 

  37. Dey A, Jenney FE Jr, Adams MWW, Babini E, Takahashi Y, Fukuyama K, Hodgson KO, Hedman B, Solomon EI (2007) Science 318:1464–1468

    Article  PubMed  CAS  Google Scholar 

  38. Giastas P, Pinotsis N, Efthymiou G, Wilmanns M, Kyritsis P, Moulis JM, Mavridis IM (2006) J Biol Inorg Chem 11:445–458

    Article  PubMed  CAS  Google Scholar 

  39. Niu S, Ichiye T (2009) J Am Chem Soc 131:5724–5725

    Article  PubMed  CAS  Google Scholar 

  40. Saridakis E, Giastas P, Efthymiou G, Thoma V, Moulis JM, Kyritsis P, Mavridis I (2009) J Biol Inorg Chem 14:783–799

    Article  PubMed  CAS  Google Scholar 

  41. Hasan MN, Hagedoorn PL, Hagen WR (2002) FEBS Lett 531:335–338

    Article  PubMed  CAS  Google Scholar 

  42. Conover RC, Park JB, Adams MWW, Johnson MK (1991) J Am Chem Soc 113:2799–2800

    Article  CAS  Google Scholar 

  43. Staples CR, Dhawan IK, Finnegan MG, Dwinell DA, Zhou ZH, Huang HS, Verhagen MFJM, Adams MWW, Johnson MK (1997) Inorg Chem 36:5740–5749

    Article  PubMed  CAS  Google Scholar 

  44. Srivastava KKP, Surerus KK, Conover RC, Johnson MK, Park JB, Adams MWW, Munck E (1993) Inorg Chem 32:927–936

    Article  CAS  Google Scholar 

  45. Conover RC, Park JB, Adams MWW, Johnson MK (1990) J Am Chem Soc 112:4562–4564

    Article  CAS  Google Scholar 

  46. Butt JN, Armstrong FA, Breton J, George SJ, Thomson AJ, Hatchikian EC (1991) J Am Chem Soc 113:6663–6670

    Article  CAS  Google Scholar 

  47. Butt JN, Sucheta A, Armstrong FA, Breton J, Thomson AJ, Hatchikian EC (1991) J Am Chem Soc 113:8948–8950

    Article  CAS  Google Scholar 

  48. Jensen KP, Ooi B, Christensen HEM (2008) J Phys Chem A 112:12829–12841

    Article  PubMed  CAS  Google Scholar 

  49. Holm RH (1992) Adv Inorg Chem 38:1–71

    Article  CAS  Google Scholar 

  50. Zhou J, Raebiger JW, Crawford CA, Holm RH (1997) J Am Chem Soc 119:6242–6250

    Article  CAS  Google Scholar 

  51. Beinert H, Holm RH, Munck E (1997) Science 277:653–659

    Article  PubMed  CAS  Google Scholar 

  52. Zhou J, Holm R (1995) J Am Chem Soc 117:11353–11354

    Article  CAS  Google Scholar 

  53. Butt JN, Niles J, Armstrong FA, Breton J, Thomson AJ (1994) Nat Struct Biol 1:427–433

    Article  PubMed  CAS  Google Scholar 

  54. Petillot Y, Forest E, Mathieu I, Meyer J, Moulis JM (1993) Biochem J 296:657–661

    PubMed  CAS  Google Scholar 

  55. Petillot Y, Forest E, Meyer J, Moulis JM (1995) Anal Biochem 228:56–63

    Article  PubMed  CAS  Google Scholar 

  56. Smith E, Cornett D, Amster I, Adams M (1993) Anal Biochem 209:379–380

    Article  PubMed  CAS  Google Scholar 

  57. Johnson K, Amster I (2001) J Am Soc Mass Spectrom 12:819–825

    Article  PubMed  CAS  Google Scholar 

  58. Taylor P, Parks B, Kurtz D, Amster I (2001) J Biol Inorg Chem 6:201–206

    Article  PubMed  CAS  Google Scholar 

  59. Johnson K, Verhagen M, Brereton P, Adams M, Amster I (2000) Anal Chem 72:1410–1418

    Article  PubMed  CAS  Google Scholar 

  60. Kabsch W (2010) Acta Crystallogr Sect D Biol Crystallogr 66:125–132

    Article  Google Scholar 

  61. Kabsch W (2010) Acta Crystallogr Sect D Biol Crystallogr 66:133–144

    Article  Google Scholar 

  62. Bailey S (1994) Acta Crystallogr Sect D Biol Crystallogr 50:760–763

    Article  Google Scholar 

  63. Vagin A, Teplyakov A (1997) J Appl Crystallogr 30:1022–1025

    Article  CAS  Google Scholar 

  64. Murshudov G, Vagin A, Dodson E (1997) Acta Crystallogr Sect D Biol Crystallogr 53:240–255

    Article  CAS  Google Scholar 

  65. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Acta Crystallogr Sect D Biol Crystallogr 66:486–501

    Article  CAS  Google Scholar 

  66. Hagen WR (2009) Biomolecular EPR spectroscopy. CRC, Boca Raton

    Google Scholar 

  67. DeLano WL (2006) PyMOL. DeLano Scientific. http://www.pymol.org

  68. Holloway C, Nevin W, Melnik M (1994) J Coord Chem 31:191–235

    Article  CAS  Google Scholar 

  69. Stalick J, Siedle A, Mighell A, Hubbard C (1979) J Am Chem Soc 101:2903–2907

    Article  CAS  Google Scholar 

  70. Brunner H, Hollman A, Zabel M, Nuber B (2000) J Organomet Chem 609:44–52

    Article  CAS  Google Scholar 

  71. Loftin IR, Franke S, Blackburn NJ, Mcevoy MM (2007) Protein Sci 16:2287–2293

    Article  PubMed  CAS  Google Scholar 

  72. Changela A, Chen K, Xue Y, Holschen J, Outten C, O’Halloran T, Mondragon A (2003) Science 301:1383–1387

    Article  PubMed  CAS  Google Scholar 

  73. Peters J, Stowell M, Soltis S, Finnegan M, Johnson M, Rees D (1997) Biochemistry 36:1181–1187

    Article  PubMed  CAS  Google Scholar 

  74. Zhou Y, MacKinnon R (2003) J Mol Biol 333:965–975

    Article  PubMed  CAS  Google Scholar 

  75. Zheng H, Chruszcz M, Lasota P, Lebioda L, Minor W (2008) J Inorg Biochem 102:1765–1776

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge MAX-lab (Lund, Sweden) for provision of synchrotron radiation beam time and Marjolein Thunnissen for expert help and guidance. We thank Jingdong Zhang for use of her potentiostat and advice on electrochemistry. We thank Johan Jeziorski Jensen for his participation in obtaining some of the electrochemistry data. This study was supported by a grant from the Danish Council for Independent Research Within Technology and Production Sciences (grant no. 09-064199). The work by I.N.J.-S. was funded by the National Development Agency of Hungary with financial support from the Research and Technology Innovation Fund (project number 80038). The Technical University of Denmark is acknowledged for providing a PhD scholarship for L.T.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Erik Mølager Christensen.

Additional information

M. Martic and I.N. Jakab-Simon contributed equally to this project and should be considered joint first authors.

An interactive 3D complement page in Proteopedia is available at http://proteopedia.org/w/Journal:JBIC:19.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material Figures (PDF 254 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martic, M., Jakab-Simon, I.N., Haahr, L.T. et al. Heterometallic [AgFe3S4] ferredoxin variants: synthesis, characterization, and the first crystal structure of an engineered heterometallic iron–sulfur protein. J Biol Inorg Chem 18, 261–276 (2013). https://doi.org/10.1007/s00775-012-0971-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0971-3

Keywords

Navigation