Skip to main content
Log in

The electron transfer complex between nitrous oxide reductase and its electron donors

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Identifying redox partners and the interaction surfaces is crucial for fully understanding electron flow in a respiratory chain. In this study, we focused on the interaction of nitrous oxide reductase (N2OR), which catalyzes the final step in bacterial denitrification, with its physiological electron donor, either a c-type cytochrome or a type 1 copper protein. The comparison between the interaction of N2OR from three different microorganisms, Pseudomonas nautica, Paracoccus denitrificans, and Achromobacter cycloclastes, with their physiological electron donors was performed through the analysis of the primary sequence alignment, electrostatic surface, and molecular docking simulations, using the bimolecular complex generation with global evaluation and ranking algorithm. The docking results were analyzed taking into account the experimental data, since the interaction is suggested to have either a hydrophobic nature, in the case of P. nautica N2OR, or an electrostatic nature, in the case of P. denitrificans N2OR and A. cycloclastes N2OR. A set of well-conserved residues on the N2OR surface were identified as being part of the electron transfer pathway from the redox partner to N2OR (Ala495, Asp519, Val524, His566 and Leu568 numbered according to the P. nautica N2OR sequence). Moreover, we built a model for Wolinella succinogenes N2OR, an enzyme that has an additional c-type-heme-containing domain. The structures of the N2OR domain and the c-type-heme-containing domain were modeled and the full-length structure was obtained by molecular docking simulation of these two domains. The orientation of the c-type-heme-containing domain relative to the N2OR domain is similar to that found in the other electron transfer complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zumft WG (1997) Microbiol Mol Biol Rev 61:533–616

    PubMed  CAS  Google Scholar 

  2. Tavares P, Pereira AS, Moura JJG, Moura I (2006) J Inorg Biochem 100:2087–2100

    Article  PubMed  CAS  Google Scholar 

  3. Lo Conte L, Chothia C, Janin J (1999) J Mol Biol 285:2177–2198

    Article  PubMed  Google Scholar 

  4. Prudencio M, Ubbink M (2004) J Mol Recognit 17:524–539

    Article  PubMed  CAS  Google Scholar 

  5. Sukumar N, Chen Z-w, Ferrari D, Merli A, Rossi GL, Bellamy HD, Chistoserdov A, Davidson VL, Mathews FS (2006) Biochemistry 45:13500–13510

    Article  PubMed  CAS  Google Scholar 

  6. Moreira IS, Fernandes PA, Ramos MJ (2010) J Comput Chem 31:317–342

    PubMed  CAS  Google Scholar 

  7. Palma PN, Krippahl L, Wampler JE, Moura JJG (2000) Proteins 39:372–384

    Article  PubMed  CAS  Google Scholar 

  8. Xu X, Schurmann P, Chung J, Hass M, Kim S, Hirasawa M, Tripathy J, Knaff D, Ubbink M (2009) J Am Chem Soc 131:17576–17582

    Article  PubMed  CAS  Google Scholar 

  9. Fantuzzi A, Meharenna YT, Briscoe PB, Guerlesquin F, Sadeghi SJ, Gilardi G (2009) Biochim Biophys Acta 1787:234–241

    Article  PubMed  CAS  Google Scholar 

  10. Almeida RM, Pauleta SR, Moura I, Moura JJG (2009) J Inorg Biochem 103:1245–1253

    Article  PubMed  CAS  Google Scholar 

  11. Zumft WG, Kroneck PM (2007) Adv Microb Physiol 52:107–227

    Article  PubMed  CAS  Google Scholar 

  12. Brown K, Tegoni M, Prudencio M, Pereira AS, Besson S, Moura JJG, Moura I, Cambillau C (2000) Nat Struct Biol 7:191–195

    Article  PubMed  CAS  Google Scholar 

  13. Haltia T, Brown K, Tegoni M, Cambillau C, Saraste M, Mattila K, Djinovic-Carugo K (2003) Biochem J 369:77–88

    Article  PubMed  CAS  Google Scholar 

  14. Paraskevopoulos K, Antonyuk SV, Sawers RG, Eady RR, Hasnain SS (2006) J Mol Biol 362:55–65

    Article  PubMed  CAS  Google Scholar 

  15. Winkler JR (2000) Curr Opin Chem Biol 4:192–198

    Article  PubMed  CAS  Google Scholar 

  16. Witt H, Malatesta F, Nicoletti F, Brunori M, Ludwig B (1998) J Biol Chem 273:5132–5136

    Article  PubMed  CAS  Google Scholar 

  17. Maneg O, Ludwig B, Malatesta F (2003) J Biol Chem 278:46734–46740

    Article  PubMed  CAS  Google Scholar 

  18. Dell’Acqua S, Pauleta SR, Monzani E, Pereira AS, Casella L, Moura JJG, Moura I (2008) Biochemistry 47:10852–10862

    Article  PubMed  Google Scholar 

  19. Berks BC, Baratta D, Richardson J, Ferguson SJ (1993) Eur J Biochem 212:467–476

    Article  PubMed  CAS  Google Scholar 

  20. Moir JWB, Ferguson SJ (1994) Microbiology 140:389–397

    Article  CAS  Google Scholar 

  21. Koutny M, Kucera I, Tesarik R, Turanek J, Van Spanning RJ (1999) FEBS Lett 448:157–159

    Article  PubMed  CAS  Google Scholar 

  22. Rasmussen T, Brittain T, Berks BC, Watmough NJ, Thomson AJ (2005) Dalton Trans 3501–3506

  23. Mattila K, Haltia T (2005) Proteins 59:708–722

    Article  PubMed  CAS  Google Scholar 

  24. Fujita K, Ijima F, Obara Y, Hirasawa M, Brown DE, Kohzuma T, Dooley DM (2009) J Biol Inorg Chem 14(Suppl 1):S11–S20

    Google Scholar 

  25. Liu MY, Liu MC, Payne WJ, Legall J (1986) J Bacteriol 166:604–608

    PubMed  CAS  Google Scholar 

  26. Fujita K, Chan JM, Bollinger JA, Alvarez ML, Dooley DM (2007) J Inorg Biochem 101:1836–1844

    Article  PubMed  CAS  Google Scholar 

  27. Teraguchi S, Hollocher TC (1989) J Biol Chem 264:1972–1979

    PubMed  CAS  Google Scholar 

  28. Zhang CS, Hollocher TC (1993) Biochim Biophys Acta 1142:253–261

    Article  CAS  Google Scholar 

  29. Brown K, Nurizzo D, Besson S, Shepard W, Moura J, Moura I, Tegoni M, Cambillau C (1999) J Mol Biol 289:1017–1028

    Article  PubMed  CAS  Google Scholar 

  30. Benning MM, Meyer TE, Holden HM (1994) Arch Biochem Biophys 310:460–466

    Article  PubMed  CAS  Google Scholar 

  31. Najmudin S, Pauleta SR, Moura I, Romao MJ (2010) Acta Crystallogr Sect F Struct Biol Cryst Commun 66:627–635

    Article  PubMed  Google Scholar 

  32. Inoue T, Nishio N, Suzuki S, Kataoka K, Kohzuma T, Kai Y (1999) J Biol Chem 274:17845–17852

    Article  PubMed  CAS  Google Scholar 

  33. Bushnell GW, Louie GV, Brayer GD (1990) J Mol Biol 214:585–595

    Article  PubMed  CAS  Google Scholar 

  34. Mirkin N, Jaconcic J, Stojanoff V, Moreno A (2008) Proteins 70:83–92

    Article  PubMed  CAS  Google Scholar 

  35. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  36. Betts JN, Beratan DN, Onuchic JN (1992) J Am Chem Soc 114:4043–4046

    Article  CAS  Google Scholar 

  37. Regan JJ, Risser SM, Beratan DN, Onuchic JN (1993) J Phys Chem 97:13083–13088

    Article  CAS  Google Scholar 

  38. Onuchic JN, Beratan DN, Winkler JR, Gray HB (1992) Annu Rev Biophys Biomol Struct 21:349–377

    Article  PubMed  CAS  Google Scholar 

  39. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  40. de Vries SJ, van Dijk ADJ, Bonvin AMJJ (2006) Proteins 63:479–489

    Article  PubMed  Google Scholar 

  41. Kelley LA, Sternberg MJ (2009) Nat Protoc 4:363–371

    Article  PubMed  CAS  Google Scholar 

  42. Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2008) Nat Protoc 4:1–13

    Article  Google Scholar 

  43. Prudencio M, Pereira AS, Tavares P, Besson S, Cabrito I, Brown K, Samyn B, Devreese B, Van Beeumen J, Rusnak F, Fauque G, Moura JJG, Tegoni M, Cambillau C, Moura I (2000) Biochemistry 39:3899–3907

    Article  PubMed  CAS  Google Scholar 

  44. Pauleta SR, Guerlesquin F, Goodhew CF, Devreese B, Van Beeumen J, Pereira AS, Moura I, Pettigrew GW (2004) Biochemistry 43:11214–11225

    Article  PubMed  CAS  Google Scholar 

  45. Williams PA, Fulop V, Leung YC, Chan C, Moir JW, Howlett G, Ferguson SJ, Radford SE, Hajdu J (1995) Nat Struct Biol 2:975–982

    Article  PubMed  CAS  Google Scholar 

  46. Kukimoto M, Nishiyama M, Ohnuki T, Turley S, Adman ET, Horinouchi S, Beppu T (1995) Protein Eng 8:153–158

    Article  PubMed  CAS  Google Scholar 

  47. Pelletier H, Kraut J (1992) Science 258:1748–1755

    Article  PubMed  CAS  Google Scholar 

  48. Pauleta SR, Cooper A, Nutley M, Errington N, Harding S, Guerlesquin F, Goodhew CF, Moura I, Moura JJG, Pettigrew GW (2004) Biochemistry 43:14566–14576

    Article  PubMed  CAS  Google Scholar 

  49. Pearson IV, Page MD, van Spanning RJM, Ferguson SJ (2003) J Bacteriol 185:6308–6315

    Article  PubMed  CAS  Google Scholar 

  50. Moir JW, Wehrfritz JM, Spiro S, Richardson DJ (1996) Biochem J 319:823–827

    PubMed  CAS  Google Scholar 

  51. Kukimoto M, Nishiyama M, Tanokura M, Adman ET, Horinouchi S (1996) J Biol Chem 271:13680–13683

    Article  PubMed  CAS  Google Scholar 

  52. Kataoka K, Yamaguchi K, Kobayashi M, Mori T, Bokui N, Suzuki S (2004) J Biol Chem 279:53374–53378

    Article  PubMed  CAS  Google Scholar 

  53. Ghosh S, Gorelsky SI, Chen P, Cabrito I, Moura JJ, Moura I, Solomon EI (2003) J Am Chem Soc 125:15708–15709

    Article  PubMed  CAS  Google Scholar 

  54. Dell’Acqua S, Pauleta SR, Moura I, Moura JJG (2011) J Biol Inorg Chem 16:183–194

    Article  PubMed  Google Scholar 

  55. Gorelsky SI, Ghosh S, Solomon EI (2006) J Am Chem Soc 128:278–290

    Article  PubMed  CAS  Google Scholar 

  56. Wang K, Geren L, Zhen Y, Ma L, Ferguson-Miller S, Durham B, Millett F (2002) Biochemistry 41:2298–2304

    Article  PubMed  CAS  Google Scholar 

  57. Srinivasan V, Rajendran C, Sousa FL, Melo AM, Saraiva LM, Pereira MM, Santana M, Teixeira M, Michel H (2005) J Mol Biol 345:1047–1057

    Article  PubMed  CAS  Google Scholar 

  58. Chen ZW, Matsushita K, Yamashita T, Fujii TA, Toyama H, Adachi O, Bellamy HD, Mathews FS (2002) Structure 10:837–849

    Article  PubMed  CAS  Google Scholar 

  59. Benning MM, Meyer TE, Holden HM (1996) Arch Biochem Biophys 333:338–348

    Article  PubMed  CAS  Google Scholar 

  60. Stelter M, Melo AM, Pereira MM, Gomes CM, Hreggvidsson GO, Hjorleifsdottir S, Saraiva LM, Teixeira M, Archer M (2008) Biochemistry 47:11953–11963

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Fundação para a Ciência e Tecnologia grants PTDC/QUI/64638/2006 (to I.M.) and SFRH/BD/30414/2006 (to S.D.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José J. G. Moura or Sofia R. Pauleta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Materials (PDF 2860 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dell’Acqua, S., Moura, I., Moura, J.J.G. et al. The electron transfer complex between nitrous oxide reductase and its electron donors. J Biol Inorg Chem 16, 1241–1254 (2011). https://doi.org/10.1007/s00775-011-0812-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0812-9

Keywords

Navigation