Skip to main content
Log in

First step toward the “fingerprinting” of brain tumors based on synchrotron radiation X-ray fluorescence and multiple discriminant analysis

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Synchrotron-radiation-based X-ray fluorescence was applied to the elemental microimaging of neoplastic tissues in cases of various types of brain tumors. The following cases were studied: glioblastoma multiforme, gemistocytic astrocytoma, oligodendroglioma, anaplastic oligodendroglioma, ganglioglioma, fibrillary astrocytoma, and atypical transitional meningioma. Apart from neoplastic tissue, the analysis included areas of tissue apparently without malignant infiltration. The masses per unit area of P, S, Cl, K, Ca, Fe, Cu, Zn, Br, and Rb were used to construct a diagnostic classifier for brain tumors using multiple discriminant analysis. It was found that S, Cl, Cu, Fe, K, Br, and Zn are the most significant elements in the general discrimination of tumor type. The highest similarity in elemental composition was between atypical transitional meningioma and fibrillary astrocytoma. The smallest differentiation was between glioblastoma multiforme and oligodendroglioma. The mean percentage of correct classifications, estimated according to the a posteriori probabilities procedure, was 99.9%, whereas the mean prediction ability of 87.6% was achieved for ten new cases excluded previously from the model construction. The results showed that multiple discriminant analysis based on elemental composition of tissue may be a potentially valuable method assisting differentiation and/or classification of brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Chem Biol Interact 160:1–40

    Article  PubMed  CAS  Google Scholar 

  2. Valko M, Morris H, Cronin MT (2005) Curr Med Chem 12:1161–1208

    Article  PubMed  CAS  Google Scholar 

  3. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Mol Cell Biochem 345:91–104

    Article  PubMed  CAS  Google Scholar 

  4. Vural H, Uzun K, Uz E, Koçyigit A, Cigli A, Akyol O (2000) J Trace Elem Med Biol 14:88–91

    Article  PubMed  CAS  Google Scholar 

  5. Taysi S, Polat F, Gul M, Sari RA, Bakan E (2002) Rheumatol Int 21:200–204

    Article  PubMed  CAS  Google Scholar 

  6. Sky-Peck HH (1986) Clin Physiol Biochem 4:99–111

    PubMed  CAS  Google Scholar 

  7. Millos J, Costas-Rodríguez M, Lavilla I, Bendicho C (2008) Anal Chim Acta 622:77–84

    Article  PubMed  CAS  Google Scholar 

  8. Al-Ebraheem A, Farquharson MJ, Ryan E (2009) Appl Radiat Isot 67:470–474

    Article  PubMed  CAS  Google Scholar 

  9. Gurusamy KS, Farquharson MJ, Craig C, Davidson BR (2008) Biometals 21:373–378

    Article  PubMed  CAS  Google Scholar 

  10. Lavilla I, Costas M, Miguel PS, Millos J, Bendicho C (2009) Biometals 22:863–875

    Article  PubMed  CAS  Google Scholar 

  11. Piacenti da Silvaa M, Araújo OL, Zucchib D, Ribeiro-Silva A, Poletti ME (2009) Spectrochem Acta B 64:587–592

    Article  Google Scholar 

  12. Adams F, Janssens K, Snigirev A (1998) J Anal At Spectrom 13:319–331

    Article  CAS  Google Scholar 

  13. Banaś K, Jasiński A, Banaś AM, Gajda M, Dyduch G, Pawlicki B, Kwiatek WM (2007) Anal Chem 79:6670–6674

    Article  PubMed  Google Scholar 

  14. Huang YY, Lu JX, He RG, Zhao LM, Wang ZG, He W, Zhang YX (2001) Nucl Instrum Methods Phys Res A 467–468:1301–1304

    Article  Google Scholar 

  15. Paunesku T, Vogt S, Maser J, Lai B, Woloschak G (2006) J Cell Biochem 99:1489–1502

    Article  PubMed  CAS  Google Scholar 

  16. Ilinski P, Lai B, Cai Z, Yun W, Legnini D, Talarico T, Cholewa M, Webster LK, Deacon GB, Rainone S, Phillips DR, Stampfl AP (2003) Cancer Res 63:1776–1779

    PubMed  CAS  Google Scholar 

  17. Finney L, Mandava S, Ursos L, Zhang W, Rodi D, Vogt S, Legnini D, Maser J, Ikpatt F, Olopade OI, Glesne D (2007) Proc Natl Acad Sci USA 104:2247–2252

    Article  PubMed  CAS  Google Scholar 

  18. Duong TT, Witting PK, Antao ST, Parry SN, Kennerson M, Lai B, Vogt S, Lay PA, Harris HH (2009) J Neurochem 108:1143–1154

    Article  PubMed  CAS  Google Scholar 

  19. Kehr S, Malinouski M, Finney L, Vogt S, Labunskyy VM, Kasaikina MV, Carlson BA, Zhou Y, Hatfield DL, Gladyshev VN (2009) J Mol Biol 389:808–818

    Article  PubMed  CAS  Google Scholar 

  20. Szczerbowska-Boruchowska M, Chwiej J, Lankosz M, Adamek D, Wojcik S, Krygowska-Wajs A, Tomik B, Bohic S, Susini J, Simionovici A, Dumas P, Kastyak M (2005) X-Ray Spectrom 34:514–520

    Article  CAS  Google Scholar 

  21. Ortega R, Cloetens P, Devès G, Carmona A, Bohic S (2007) PLoS ONE 2(9):e925. doi:10.1371/journal.pone.0000925

    Article  PubMed  Google Scholar 

  22. Tomik B, Chwiej J, Szczerbowska-Boruchowska M, Lankosz M, Wójcik S, Adamek D, Falkenberg G, Bohic S, Simionovici A, Stegowski Z, Szczudlik A (2006) Neurochem Res 31:321–331

    Article  PubMed  CAS  Google Scholar 

  23. Yoshida S, Ide-Ektessabi A, Fujisawa S (2003) Struct Chem 14:85–95

    Article  CAS  Google Scholar 

  24. Ide-Ektessabi A, Fujisawa S, Yoshida S (2002) J Appl Phys 91:1613–1617

    Article  CAS  Google Scholar 

  25. Ide-Ektessabi A, Rabionet M (2005) Anal Sci 21:885–892

    Article  PubMed  CAS  Google Scholar 

  26. Miller LM, Wang Q, Telivala TP, Smith RJ, Lanzirotti A, Miklossy J (2006) J Struct Biol 155:30–37

    Article  PubMed  CAS  Google Scholar 

  27. Geraki K, Farquharson MJ, Bradley DA (2004) Phys Med Biol 49:99–110

    Article  PubMed  CAS  Google Scholar 

  28. Geraki K, Farquharson MJ, Bradley DA (2002) Phys Med Biol 47:2327–2339

    Article  PubMed  CAS  Google Scholar 

  29. Ide-Ektessabi AFS, Sugimura K, Kitamura Y, Gotoh A (2002) X-Ray Spectrom 31:7–11

    Article  CAS  Google Scholar 

  30. Carvalhoa ML, Magalhãesa T, Beckerb M, von Bohlen A (2007) Spectrochem Acta B 62:1004–1011

    Article  Google Scholar 

  31. Rechner AC (ed) (2002) Methods of multivariate analysis. Wiley, Chichester

  32. Drake EN, Sky-Peck HH (1989) Cancer Res 49:4210–4215

    PubMed  CAS  Google Scholar 

  33. Paone G, De Angelis G, Munno R, Pallotta G, Bigioni D, Saltini C, Bisetti A, Ameglio F (1995) Eur Respir J 8:1136–1140

    Article  PubMed  CAS  Google Scholar 

  34. Marchevsky AM, Tsou JA, Laird-Offringa IA (2004) J Mol Diagn 6:28–36

    Article  PubMed  CAS  Google Scholar 

  35. Opstad KS, Ladroue C, Bell BA, Griffiths JR, Howe FA (2007) NMR Biomed 20:763–770

    Article  PubMed  CAS  Google Scholar 

  36. Krafft C, Sobottka SB, Geiger KD, Schackert G, Salzer R (2007) Anal Bioanal Chem 387:1669–1677

    Article  PubMed  CAS  Google Scholar 

  37. Falzon G, Pearson S, Murison R, Hall C, Siu K, Round A, Schültke E, Kaye AH, Lewis R (2007) Phys Med Biol 52:6543–6553

    Article  PubMed  CAS  Google Scholar 

  38. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) (2007) WHO classification of tumours of the central nervous system. IARC, Lyon

    Google Scholar 

  39. Falkenberg G, Rickers K (2002) HASYLAB annual report, HASYLAB, Hamburg, pp 88–95. http://hasyweb.desy.de/science/annual_reports/2002_report/index.html

  40. http://www.iaea.org/OurWork/ST/NA/NAAL/pci/ins/xrf/downloads/QXAS_Manual.pdf. Accessed 28 Jun 2011

  41. Carroll JD, Green PE, Chaturvedi A (eds) (1997) Mathematical tools for applied multivariate analysis. Academic Press, New York

  42. StatSoft (2005) STATISTICA 7.1. StatSoft, Tulsa

  43. Munita CS, Barroso LP, Oliveira PMS (2006) J Radioanal Nucl Chem 269:335–338

    Article  CAS  Google Scholar 

  44. Adamek D (2005) Folia Neuropathol 43:191–192

    PubMed  Google Scholar 

  45. Giannini C, Burger PC, Berkey BA, Cairncross JG, Jenkins RB, Mehta M, Curran WJ, Aldape K (2008) Brain Pathol 18:360–369

    Article  PubMed  Google Scholar 

  46. Burger PC, Scheithauer BW (2008) In: Silverberg SG, Sobin LH (eds) Tumors of the central nervous system. ARP Press, Washington, pp 33–208

Download references

Acknowledgments

We acknowledge HASYLAB/DESY for the provision of synchrotron radiation facilities. We thank Karen Appel, Anna Smykla, and Mateusz Czyzycki for their assistance in the experiment as well as Zdzislaw Stegowski and Joanna Jaskiewicz for data preprocessing. This work was supported by the Ministry of Science and High Education, Warsaw, Poland, and the following grants: DESY/304/2006 (Ministry of Science and High Education, Warsaw, Poland, 2006–2009), N N518 377537 (Ministry of Science and High Education, Warsaw, Poland), and the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 226716. The study was approved by Jagiellonian University Bioethical Committee (KBET/101/B/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Szczerbowska-Boruchowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szczerbowska-Boruchowska, M., Lankosz, M. & Adamek, D. First step toward the “fingerprinting” of brain tumors based on synchrotron radiation X-ray fluorescence and multiple discriminant analysis. J Biol Inorg Chem 16, 1217–1226 (2011). https://doi.org/10.1007/s00775-011-0810-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0810-y

Keywords

Navigation