Skip to main content
Log in

Antidiabetic vanadium compound and membrane interfaces: interface-facilitated metal complex hydrolysis

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The interactions of metabolites of the antidiabetic vanadium-containing drug bis(maltolato)oxovanadium(IV) (BMOV) with lipid interface model systems were investigated and the results were used to describe a potentially novel mechanism by which these compounds initiate membrane-receptor-mediated signal transduction. Specifically, spectroscopic studies probed the BMOV oxidation and hydrolysis product interaction with interfaces created from cetyltrimethylammonium bromide (CTAB) which mimics the positively charged head group on phosphatidylcholine. 1H and 51V NMR spectroscopies were used to determine the location of the dioxobis(maltolato)oxovanadate(V) and the maltol ligand in micelles and reverse micelles by measuring changes in the chemical shift, signal linewidth, and species distribution. Both micelles and reverse micelles interacted similarly with the complex and the ligand, suggesting that interaction is strong as anticipated by Coulombic attraction between the positively charged lipid head group and the negatively charged complex and deprotonated ligand. The nature of the model system was confirmed using dynamic light scattering studies and conductivity measurements. Interactions of the complex/ligand above and below the critical micelle concentration of micelle formation were different, with much stronger interactions when CTAB was in the form of a micelle. Both the complex and the ligand penetrated the lipid interface and were located near the charged head group. These studies demonstrate that a lipid-like interface affects the stability of the complex and raise the possibility that ligand exchange at the interface may be important for the mode of action for these systems. Combined, these studies support recently reported in vivo observations of BMOV penetration into 3T3-L1 adipocyte membranes and increased translocation of a glucose transporter to the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BMOV:

Bis(maltolato)oxovanadium(IV)

cmc:

Critical micelle concentration

CTAB:

Cetyltrimethylammonium bromide

DLS:

Dynamic light scattering

DSS:

4,4-Dimethyl-4-silapentane-1-sulfonic acid sodium salt

RM:

Reverse micelle

AOT:

Sodium bis(2-ethylhexyl)sulfosuccinate (also abbreviated Aerosol-OT)

dipic:

2,6-pyridinedicarboxylate

ma:

maltolato

References

  1. Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C (2009) J Inorg Biochem 103:554–558

    Article  PubMed  CAS  Google Scholar 

  2. Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) Chem Rev 104:849–902

    Article  PubMed  CAS  Google Scholar 

  3. Thompson KH (1999) Biofactors 10:43–51

    Article  PubMed  CAS  Google Scholar 

  4. Rehder D (2003) Inorg Chem Commun 6:604–617

    Article  CAS  Google Scholar 

  5. Barrio DA, Etcheverry SB (2010) Curr Med Chem 17:3632–3642

    Article  PubMed  CAS  Google Scholar 

  6. McLauchlan CC, Hooker JD, Jones MA, Dymon Z, Backhus EA, Youkhana MA, Manus LM (2010) J Inorg Biochem 104:274–281

    Article  PubMed  CAS  Google Scholar 

  7. Li M, Smee JJ, Ding W, Crans DC (2009) J Inorg Biochem 103:585–589

    Article  PubMed  CAS  Google Scholar 

  8. Gao XL, Lu LP, Zhu ML, Yuan CX, Ma JF, Fu XQ (2009) Acta Chim Sin 67:929–936

    CAS  Google Scholar 

  9. Yuan CX, Lu LP, Gao XL, Wu YB, Guo ML, Li Y, Fu XQ, Zhu ML (2009) J Biol Inorg Chem 14:841–851

    Article  PubMed  CAS  Google Scholar 

  10. Roess DA, Smith SML, Winter P, Zhou J, Dou P, Baruah B, Trujillo AM, Levinger NE, Yang X, Barisas BG, Crans DC (2008) Chem Biodivers 5:1558–1570

    Article  PubMed  CAS  Google Scholar 

  11. Sakurai H (2008) J Pharm Soc Jpn 128:317–322

    CAS  Google Scholar 

  12. Sakurai H, Yoshikawa Y, Yasui H (2008) Chem Soc Rev 37:2383–2392

    Article  PubMed  CAS  Google Scholar 

  13. Rehder D, Pessoa JC, Geraldes CFGC, Castro MMCA, Kabanos T, Kiss T, Meier B, Micera G, Pettersson L, Rangel M, Salifoglou A, Turel I, Wang DR (2002) J Biol Inorg Chem 7:384–396

    Article  PubMed  CAS  Google Scholar 

  14. Yang XG, Wang K, Lu JF, Crans DC (2003) Coord Chem Rev 237:103–111

    Article  CAS  Google Scholar 

  15. Yang XG, Yang XD, Yuan L, Wang K, Crans DC (2004) Pharm Res 21:1026–1033

    Article  PubMed  CAS  Google Scholar 

  16. Faneca H, Figueiredo VA, Tomaz I, Goncalves G, Avecilla F, de Lima MCP, Geraldes CFGC, Pessoa JC, Castro MMCA (2009) J Inorg Biochem 103:601–608

    Article  PubMed  CAS  Google Scholar 

  17. Xie MJ, Niu YF, Yang XD, Liu WP, Li L, Gao LH, Yan SP, Meng ZH (2010) Eur J Med Chem 45:6077–6084

    Article  PubMed  CAS  Google Scholar 

  18. Islam MN, Kumbhar AA, Kumbhar AS, Zeller M, Butcher RJ, Dusane MB, Joshi BN (2010) Inorg Chem 49:8237–8246

    Article  PubMed  CAS  Google Scholar 

  19. Hiromura M, Nakayama A, Adachi Y, Doi M, Sakurai H (2007) J Biol Inorg Chem 12:1275–1287

    Article  PubMed  CAS  Google Scholar 

  20. Aureliano M, Henao F, Tiago T, Duarte RO, Moura JJG, Baruah B, Crans DC (2008) Inorg Chem 47:5677–5684

    Article  PubMed  CAS  Google Scholar 

  21. Winter PW, Al-Qatati A, Wolf-Ringwall AL, Schoeberl S, Crans DC, Van Orden AK, Barisas BG, Roess DA (2011) (submitted)

  22. Gupta S, Moulik SP (2008) J Pharm Sci 97:22–45

    Article  PubMed  CAS  Google Scholar 

  23. Lawrence MJ, Rees GD (2000) Adv Drug Deliv Rev 45:89–121

    Article  PubMed  CAS  Google Scholar 

  24. Langevin D (1992) Annu Rev Phys Chem 43:341–369

    Article  CAS  Google Scholar 

  25. Chevalier Y, Zemb T (1990) Rep Prog Phys 53:279–371

    Article  CAS  Google Scholar 

  26. Fendler JH (1987) Chem Rev 87:877–899

    Article  CAS  Google Scholar 

  27. Choi SY, Oh SG, Lee JS (2001) Coll Surf B 20:239–244

    Article  CAS  Google Scholar 

  28. Kreke PJ, Magid LJ, Gee JC (1996) Langmuir 12:699–705

    Article  CAS  Google Scholar 

  29. Vermathen M, Stiles P, Bachofer SJ, Simonis U (2002) Langmuir 18:1030–1042

    Article  CAS  Google Scholar 

  30. Gaidamauskas E, Cleaver DP, Chatterjee PB, Crans DC (2010) Langmuir 26:13153–13161

    Article  PubMed  CAS  Google Scholar 

  31. Correa NM, Biasutti MA, Silber JJ (1995) J Colloid Interface Sci 172:71–76

    Article  CAS  Google Scholar 

  32. Falcone RD, Correa NM, Biasutti MA, Silber JJ (2000) Langmuir 16:3070–3076

    Article  CAS  Google Scholar 

  33. Rack JJ, McCleskey TM, Birnbaum ER (2002) J Phys Chem B 106:632–636

    Article  CAS  Google Scholar 

  34. Aureliano M, Crans DC (2009) J Inorg Biochem 103:536–546

    Article  PubMed  CAS  Google Scholar 

  35. Stover J, Rithner CD, Inafuku RA, Crans DC, Levinger NE (2005) Langmuir 21:6250–6258

    Article  PubMed  CAS  Google Scholar 

  36. Crans DC, Rithner CD, Baruah B, Gourley BL, Levinger NE (2006) J Am Chem Soc 128:4437–4445

    Article  PubMed  CAS  Google Scholar 

  37. Goyal PS, Aswal VK (2001) Curr Sci India 80:972–979

    CAS  Google Scholar 

  38. Palazzo G, Carbone L, Colafemmina G, Angelico R, Ceglie A, Giustini M (2004) Phys Chem Chem Phys 6:1423–1429

    Article  CAS  Google Scholar 

  39. Palazzo G, Lopez F, Giustini M, Colafemmina G, Ceglie A (2003) J Phys Chem B 107:1924–1931

    Article  CAS  Google Scholar 

  40. Giustini M, Palazzo G, Colafemmina G, DellaMonica M, Giomini M, Ceglie A (1996) J Phys Chem 100:3190–3198

    Article  CAS  Google Scholar 

  41. Li F, Li GZ, Wang HQ, Xue QJ (1997) Colloids Surf A 127:89–96

    Article  CAS  Google Scholar 

  42. Grieser F, Drummond CJ (1988) J Phys Chem 92:5580–5593

    Article  CAS  Google Scholar 

  43. Song AM, Zhang JH, Zhang MH, Shen T, Tang JA (2000) Colloids Surf A 167:253–262

    Article  CAS  Google Scholar 

  44. Biswas S, Bhattacharya SC, Sen PK, Moulik SP (1999) J Photochem Photobiol A 123:121–128

    Article  CAS  Google Scholar 

  45. Mchedlov-Petrossyan NO, Vodolazkaya NA, Gurina YA, Sun WC, Gee KR (2010) J Phys Chem B 114:4551–4564

    Article  PubMed  CAS  Google Scholar 

  46. Alargova RG, Danov KD, Petkov JT, Kralchevsky PA, Broze G, Mehreteab A (1997) Langmuir 13:5544–5551

    Article  CAS  Google Scholar 

  47. May S, Ben-Shaul A (2001) J Phys Chem B 105:630–640

    Article  CAS  Google Scholar 

  48. Angelico R, Palazzo G, Colafemmina G, Cirkel PA, Giustini M, Ceglie A (1998) J Phys Chem B 102:2883–2889

    Article  CAS  Google Scholar 

  49. Yuen VG, Orvig C, McNeill JH (1997) Am J Physiol Endocrinol Metab 35:E30–E35

    Google Scholar 

  50. Yuen VG, Caravan P, Gelmini L, Glover N, McNeill JH, Setyawati IA, Zhou Y, Orvig C (1997) J Inorg Biochem 68:109–116

    Article  PubMed  CAS  Google Scholar 

  51. Crans DC, Trujillo AM, Bonetti S, Rithner CD, Baruah B, Levinger NE (2008) J Org Chem 73:9633–9640

    Article  PubMed  CAS  Google Scholar 

  52. Castro MMCA, Geraldes CFGC, Gameiro P, Pereira E, Castro B, Rangel M (2000) J Inorg Biochem 80:177–179

    Article  PubMed  CAS  Google Scholar 

  53. Caravan P, Gemini L, Glover N, Herring FG, Li H, McNeill JH, Rettig SJ, Setyawati IA, Shuter E, Sun Y, Tracey AS, Yuen VG, Orvig C (1995) J Am Chem Soc 117:12759–12770

    Article  Google Scholar 

  54. Ekwall P, Mandell L, Fontell K (1969) J Colloid Interface Sci 29:639–646

    Article  PubMed  CAS  Google Scholar 

  55. Rodenas E, Valiente M (1992) Colloids Surf 62:289–295

    Article  CAS  Google Scholar 

  56. Vautier-Giongo C, Bales BL (2003) J Phys Chem B 107:5398–5403

    Article  CAS  Google Scholar 

  57. Harris RK, Becker ED, De Menezes SMC, Granger P, Hoffman RE, Zilm KW (2008) Pure Appl Chem 80:59–84

    Article  CAS  Google Scholar 

  58. Modaressi A, Sifaoui H, Grzesiak B, Solimando R, Domanska U, Rogalski M (2007) Colloids Surf A 296:104–108

    Article  CAS  Google Scholar 

  59. Pettersson L, Andersson I, Hedman B (1985) Chem Scr 25:309–317

    CAS  Google Scholar 

  60. Pettersson L, Hedman B, Andersson I, Ingri N (1983) Chem Scr 22:254–264

    CAS  Google Scholar 

  61. Pettersson L, Andersson I, Gorzsas A (2003) Coord Chem Rev 237:77–87

    Article  CAS  Google Scholar 

  62. Crans DC, Rithner CD, Theisen LA (1990) J Am Chem Soc 112:2901–2908

    Article  CAS  Google Scholar 

  63. Saponja JA, Vogel HJ (1996) J Inorg Biochem 62:253–270

    Article  PubMed  CAS  Google Scholar 

  64. Crans DC, Baruah B, Ross A, Levinger NE (2009) Coord Chem Rev 253:2178–2185

    Article  CAS  Google Scholar 

  65. Wittenkeller L, Abraha A, Ramasamy R, Defreitas DM, Theisen LA, Crans DC (1991) J Am Chem Soc 113:7872–7881

    Article  CAS  Google Scholar 

  66. Rico I, Lattes A (1986) J Phys Chem 90:5870–5872

    Article  CAS  Google Scholar 

  67. Treiner C, Makayssi A (1992) Langmuir 8:794–800

    Article  CAS  Google Scholar 

  68. Szakacs Z, Kraszni M, Noszal B (2004) Anal Bioanal Chem 378:1428–1448

    Article  PubMed  CAS  Google Scholar 

  69. Elvingson K, Baro AG, Pettersson L (1996) Inorg Chem 35:3388–3393

    Article  PubMed  CAS  Google Scholar 

  70. Baruah B, Roden J, Sedgwick M, Correa MN, Crans DC, Levinger NE (2006) J Am Chem Soc 128:12758–12765

    Article  PubMed  CAS  Google Scholar 

  71. Setyawati IA, Thompson KH, Yuen VG, Sun Y, Battell M, Lyster DM, Vo C, Ruth TJ, Zeisler S, McNeill JH, Orvig C (1998) J Appl Physiol 84:569–575

    PubMed  CAS  Google Scholar 

  72. Thompson KH, Liboiron BD, Bellman YSKDD, Setyawati IA, Patrick BO, Karunaratne V, Rawji G, Wheeler J, Sutton K, Bhanot S, Cassidy C, McNeill JH, Yuen VG, Orvig C (2003) J Biol Inorg Chem 8:66–74

    Article  PubMed  CAS  Google Scholar 

  73. Kiss T, Jakusch T, Hollender D, Dornyei A, Enyedy EA, Pessoa JC, Sakurai H, Sanz-Medel A (2008) Coord Chem Rev 252:1153–1162

    Article  CAS  Google Scholar 

  74. Pessoa JC, Tomaz I (2010) Curr Med Chem 17:3701–3738

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

D.C.C. and D.A.R. thank the National Science Foundation (0628260, CRC) for funding. We also thank Chris D. Rithner and the Department of Chemistry’s Central Instrument Facility for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debbie C. Crans or Deborah A. Roess.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crans, D.C., Schoeberl, S., Gaidamauskas, E. et al. Antidiabetic vanadium compound and membrane interfaces: interface-facilitated metal complex hydrolysis. J Biol Inorg Chem 16, 961–972 (2011). https://doi.org/10.1007/s00775-011-0796-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0796-5

Keywords

Navigation