Skip to main content
Log in

The coupled-cluster description of electronic structure: perspectives for bioinorganic chemistry

  • Commentary
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

This commentary provides an overview of the challenges and strengths of coupled-cluster theory when applied to active sites of metalloproteins. It is argued that thanks to increases in computer power and remarkable methodological developments, coupled-cluster methods will make increasingly important contributions to understanding the structure, properties and reactivity of transition metal cofactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. As described here, the difference between CCSD and the configuration interaction with single and double excitations method, CISD, is not clear. The latter also includes single and double excitations. The difference resides in the exponential form of the excitation operator in coupled-cluster theory, so given two single excitation amplitudes, the wavefunction also includes the corresponding double excitation. Likewise, including double excitations intrinsically leads to accounting at least approximately for quadruple (and higher) excitations. The effect is to make CCSD a much more accurate and more useful method than CISD.

  2. On the basis of additional CCSD(T) calculations including extrapolation to the infinite basis set limit, and correlation of the 3s3p electrons [13], the CCSDT(Q)/cc-pVTZ value can be improved still further, leading to a ‘best’ zero-point-energy-corrected bond energy of 100.8 kcal/mol—it is noteworthy that this is significantly larger than the previously reported B3LYP value of 90.2 kcal/mol [12], showing again the value of accurate correlated methods for benchmarking.

  3. This statement may not remain true if multireference coupled-cluster methods, not discussed here, can make significant progress in terms of efficiency, accuracy and ease of use.

References

  1. Podewitz M, Stiebritz MT, Reiher M (2011) Faraday Discuss 148:119–135. doi:10.1039/C004195E

    Article  PubMed  CAS  Google Scholar 

  2. Bartlett RJ, Musiał M (2007) Rev Mod Phys 79:291–352

    Article  CAS  Google Scholar 

  3. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764–7776

    Article  CAS  Google Scholar 

  4. Jensen F (1999) Introduction to computational chemistry. Wiley, Chichester

    Google Scholar 

  5. Klopper W, Bachorz RA, Hättig C, Tew DP (2010) Theor Chem Acc 126:289–304

    Article  CAS  Google Scholar 

  6. Knizia G, Adler TB, Werner HJ (2009) J Chem Phys 130:054104

    Article  PubMed  Google Scholar 

  7. Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Chem Rev 105:2279–2328

    Article  PubMed  CAS  Google Scholar 

  8. Hopmann KH, Noodleman L, Ghosh A (2010) Chem Eur J 16:10397–10408

    Article  CAS  Google Scholar 

  9. Watts JD, Urban M, Bartlett RJ (1995) Theor Chim Acta 90:341–355

    CAS  Google Scholar 

  10. Karton A, Rabinovich E, Martin JML, Ruscic B (2006) J Chem Phys 125:144108

    Article  PubMed  Google Scholar 

  11. Lee TJ, Taylor PR (1989) Int J Quantum Chem Quantum Chem Symp 23:199–207

    CAS  Google Scholar 

  12. Harvey JN, Diefenbach M, Schröder D, Schwarz H (1999) Int J Mass Spectrom 182/183:85–97

    Article  CAS  Google Scholar 

  13. Balabanov NB, Peterson KA (2006) J Chem Phys 125:074110

    Article  PubMed  Google Scholar 

  14. Carreón-Macedo JL, Harvey JN (2006) Phys Chem Chem Phys 8:93–100

    Article  PubMed  Google Scholar 

  15. Bauschlicher CW Jr, Partridge H (1994) Chem Phys Lett 231:277–282

    Article  CAS  Google Scholar 

  16. Schütz M (2000) J Chem Phys 113:9986–10001

    Article  Google Scholar 

  17. Schütz M, Manby FR (2003) Phys Chem Chem Phys 5:3349–3358

    Article  Google Scholar 

  18. Neese F, Hansen A, Liakos DG (2009) J Chem Phys 131:064103

    Article  PubMed  Google Scholar 

  19. Klopper W, Manby FR, Ten-No S, Valeev EF (2006) Int Rev Phys Chem 25:427–468

    Article  CAS  Google Scholar 

  20. Adler TB, Werner HJ (2009) J Chem Phys 130:241101

    Article  PubMed  Google Scholar 

  21. Strickland N, Harvey JN (2007) J Phys Chem B 111:841–852

    Article  PubMed  CAS  Google Scholar 

  22. Olah J, Harvey JN (2009) J Phys Chem A 113:7338–7345

    Article  PubMed  CAS  Google Scholar 

  23. Ghosh A, Vangberg T, Gonzalez E, Taylor P (2001) J Porphyrins Phthalocyanines 5:345–356

    Article  CAS  Google Scholar 

  24. Geng C, Ye S, Neese F (2010) Angew Chem Int Ed 49:5717–5720

    Article  CAS  Google Scholar 

  25. Dieterich JM, Werner HJ, Mata RA, Metz S, Thiel W (2010) J Chem Phys 132:035101

    Article  PubMed  Google Scholar 

  26. Claeyssens F, Harvey JN, Manby FR, Mata RA, Mulholland AJ, Ranaghan KE, Schütz M, Thiel S, Thiel W, Werner HJ (2006) Angew Chem Int Ed 45:6856–6859

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy N. Harvey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, J.N. The coupled-cluster description of electronic structure: perspectives for bioinorganic chemistry. J Biol Inorg Chem 16, 831–839 (2011). https://doi.org/10.1007/s00775-011-0786-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0786-7

Keywords

Navigation