Skip to main content
Log in

Interaction of the active site of the Ni–Fe–Se hydrogenase from Desulfovibrio vulgaris Hildenborough with carbon monoxide and oxygen inhibitors

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The study of Ni–Fe–Se hydrogenases is interesting from the basic research point of view because their active site is a clear example of how nature regulates the catalytic function of an enzyme by the change of a single residue, in this case a cysteine, which is replaced by a selenocysteine. Most hydrogenases are inhibited by CO and O2. In this work we studied these inhibition processes for the Ni–Fe–Se hydrogenase from Desulfovibrio vulgaris Hildenborough by combining catalytic activity measurements, followed by mass spectrometry or chronoamperometry, with Fourier transform IR spectroscopy experiments. The results show that the CO inhibitor binds to Ni in both conformations of the active site of this hydrogenase in a way similar to that in standard Ni–Fe hydrogenases, although in one of the CO-inhibited conformations the active site of the Ni–Fe–Se hydrogenase is more protected against the attack by O2. The inhibition of the Ni–Fe–Se hydrogenase activity by O2 could be explained by oxidation of the terminal cysteine ligand of the active-site Ni, instead of the direct attack of O2 on the bridging site between Ni and Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Chem Rev 107:4273–4303

    Article  CAS  PubMed  Google Scholar 

  2. Garcin E, Vernede X, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC (1999) Structure 7:557–566

    Article  CAS  PubMed  Google Scholar 

  3. He SH, Teixeira M, LeGall J, Patil DS, Moura I, Moura JJG, Dervartanian DV, Huynh BH, Peck HD (1989) J Biol Chem 264:2678–2682

    CAS  PubMed  Google Scholar 

  4. Sorgenfrei O, Duin EC, Klein A, Albracht SPJ (1996) J Biol Chem 271:23799–23806

    Article  CAS  PubMed  Google Scholar 

  5. Eidsness MK, Scott RA, Prickril BC, Dervartanian DV, LeGall J, Moura I, Moura JJG, Peck HD (1989) Proc Natl Acad Sci USA 86:147–151

    Article  CAS  PubMed  Google Scholar 

  6. Fauque G, Berlier Y, Czechowski M, Dimon B, Lespinat PA, LeGall JA (1987) J Ind Microbiol 2:15–23

    Article  CAS  Google Scholar 

  7. Wang CP, Franco R, Moura JJG, Moura I, Day EP (1992) J Biol Chem 267:7378–7380

    CAS  PubMed  Google Scholar 

  8. Vignais PM, Cournac L, Hatchikian EC, Elsen S, Serebryakova L, Zorin N, Dimon B (2002) Int J Hydrogen Energy 27:1441–1448

    Article  CAS  Google Scholar 

  9. Valente FAA, Almeida CC, Pacheco I, Carita J, Saraiva LM, Pereira IAC (2006) J Bacteriol 188:3228–3235

    Article  CAS  PubMed  Google Scholar 

  10. Lee CM, Chuang YL, Chiang CY, Lee GH, Liaw WF (2006) Inorg Chem 45:10895–10904

    Article  CAS  PubMed  Google Scholar 

  11. Song LC, Zeng GH, Mei SZ, Lou SX, Hu QM (2006) Organometallics 25:3468–3473

    Article  CAS  Google Scholar 

  12. Parkin A, Goldet G, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2008) J Am Chem Soc 130:13410–13416

    Article  CAS  PubMed  Google Scholar 

  13. Reisner E, Powell DJ, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2009) J Am Chem Soc 131:18457–18466

    Article  CAS  PubMed  Google Scholar 

  14. De Lacey AL, Gutiérrez-Sánchez C, Fernández VM, Pacheco I, Pereira IAC (2008) J Biol Inorg Chem 13:1315–1320

    Article  PubMed  Google Scholar 

  15. Bagley KA, Duin EC, Roseboom W, Albracht SPJ, Woodruff WH (1995) Biochemistry 34:5527–5535

    Article  CAS  PubMed  Google Scholar 

  16. De Lacey AL, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC, Fernandez VM (1997) J Am Chem Soc 119:7181–7189

    Article  Google Scholar 

  17. De Lacey AL, Fernandez VM, Rousset M (2005) Coord Chem Rev 249:1596–1608

    Article  Google Scholar 

  18. Liebgott PP, Leroux F, Burlat B, Dementin S, Baffert C, Lautier T, Fourmond V, Ceccaldi P, Cavazza C, Meynial-Salles I, Soucaille P, Fontecilla-Camps JC, Guigliarelli B, Bertrand P, Rousset M, Leger C (2010) Nat Chem Biol 6:63–70

    Article  CAS  PubMed  Google Scholar 

  19. Goldet G, Brandmayr C, Stripp ST, Happe T, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2009) J Am Chem Soc 131:14979–14989

    Article  CAS  PubMed  Google Scholar 

  20. Lemon BJ, Peters JW (1999) Biochemistry 38:12969–12973

    Article  CAS  PubMed  Google Scholar 

  21. Ogata H, Mizoguchi Y, Mizuno N, Miki K, Adachi S, Yasuoka N, Yagi T, Yamauchi O, Hirota S, Higuchi Y (2002) J Am Chem Soc 124:11628–11635

    Article  CAS  PubMed  Google Scholar 

  22. Volbeda A, Martin L, Cavazza C, Matho M, Faber BW, Roseboom W, Albracht SPJ, Garcin E, Rousset M, Fontecilla-Camps JC (2005) J Biol Inorg Chem 10:239–249

    Article  CAS  PubMed  Google Scholar 

  23. Vanderzwaan JW, Coremans JMCC, Bouwens ECM, Albracht SPJ (1990) Biochim Biophys Acta 1041:101–110

    CAS  Google Scholar 

  24. Carepo M, Tierney DL, Brondino CD, Yang TC, Pamplona A, Telser J, Moura I, Moura JJG, Hoffman BM (2002) J Am Chem Soc 124:281–286

    Article  CAS  PubMed  Google Scholar 

  25. Bagley KA, Van Garderen CJ, Chen M, Duin EC, Albracht SPJ, Woodruff WH (1994) Biochemistry 33:9229–9236

    Article  CAS  PubMed  Google Scholar 

  26. De Lacey AL, Stadler C, Fernandez VM, Hatchikian EC, Fan HJ, Li SH, Hall MB (2002) J Biol Inorg Chem 7:318–326

    Article  CAS  PubMed  Google Scholar 

  27. Pandelia ME, Ogata H, Currell LJ, Flores M, Lubitz W (2010) Biochim Biophys Acta 1797:304–313

    Article  CAS  PubMed  Google Scholar 

  28. Valente FMA, Oliveira ASF, Gnadt N, Pacheco I, Coelho AV, Xavier AV, Teixeira M, Soares CM, Pereira IAC (2005) J Biol Inorg Chem 10:667–682

    Article  CAS  PubMed  Google Scholar 

  29. Rüdiger O, Gutiérrez-Sánchez C, Olea D, Pereira IAC, Vélez M, Fernández VM, De Lacey AL (2010) Electroanalysis 22:776–783

    Google Scholar 

  30. Berlier Y, Fauque GD, Legall J, Choi ES, Peck HD, Lespinat PA (1987) Biochem Biophys Res Commun 146:147–153

    Article  CAS  PubMed  Google Scholar 

  31. Vincent KA, Parkin A, Armstrong FA (2007) Chem Rev 107:4366–4413

    Article  CAS  PubMed  Google Scholar 

  32. Leger C, Bertrand P (2008) Chem Rev 108:2379–2438

    Article  CAS  PubMed  Google Scholar 

  33. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, part B, 5th edn. Wiley, New York, pp 126–148

    Google Scholar 

  34. Lubitz W, Reijerse E, van Gastel M (2007) Chem Rev 107:4331–4365

    Article  CAS  PubMed  Google Scholar 

  35. Marques MC, Coelho R, De Lacey AL, Pereira IAC, Matias PM (2010) J Mol Biol 396:893–907

    Article  CAS  PubMed  Google Scholar 

  36. Grapperhaus CA, Darensbourg MY (1998) Acc Chem Res 31:451–459

    Article  CAS  Google Scholar 

  37. Reddie KG, Carroll KS (2008) Curr Opin Chem Biol 12:746–754

    Article  CAS  PubMed  Google Scholar 

  38. Liu TB, Li B, Singleton ML, Hall MB, Darensbourg MY (2009) J Am Chem Soc 131:8296–8307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministerio de Educacion y Ciencia (project CTQ2009-12649, Spain), by a research grant (PTDC/BIA-PRO/70429/2006) funded by Fundação para a Ciência e Tecnologia (FCT, MCES, Portugal) and the FEDER program, and by a Luso-Spanish Joint Action funded by CRUP (Conselho de Reitores das Universidades Portuguesas, Portugal) and the Ministerio de Educación y Ciencia (HP2007-0112, Spain). We thank Pedro Matias for discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio L. De Lacey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez-Sánchez, C., Rüdiger, O., Fernández, V.M. et al. Interaction of the active site of the Ni–Fe–Se hydrogenase from Desulfovibrio vulgaris Hildenborough with carbon monoxide and oxygen inhibitors. J Biol Inorg Chem 15, 1285–1292 (2010). https://doi.org/10.1007/s00775-010-0686-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0686-2

Keywords

Navigation