Skip to main content
Log in

Spectroscopic insights into axial ligation and active-site H-bonding in substrate-bound human heme oxygenase-2

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Heme oxygenases (HOs) are monooxygenases that catalyze the first step in heme degradation, converting heme to biliverdin with concomitant release of Fe(II) and CO from the porphyrin macrocycle. Two heme oxygenase isoforms, HO-1 and HO-2, exist that differ in several ways, including a complete lack of Cys residues in HO-1 and the presence of three Cys residues as part of heme-regulatory motifs (HRMs) in HO-2. HRMs in other heme proteins are thought to directly bind heme, or to otherwise regulate protein stability or activity; however, it is not currently known how the HRMs exert these effects on HO-2 function. To better understand the properties of this vital enzyme and to elucidate possible roles of its HRMs, various forms of HO-2 possessing distinct alterations to the HRMs were prepared. In this study, variants with Cys265 in a thiol form are compared with those with this residue in an oxidized (part of a disulfide bond or existing as a sulfenate moiety) form. Absorption and magnetic circular dichroism spectroscopic data of these HO-2 variants clearly demonstrate that a new low-spin Fe(III) heme species characteristic of thiolate ligation is formed when Cys265 is reduced. Additionally, absorption, magnetic circular dichroism, and resonance Raman data collected at different temperatures reveal an intriguing temperature dependence of the iron spin state in the heme–HO-2 complex. These findings are consistent with the presence of a hydrogen-bonding network at the heme’s distal side within the active site of HO-2 with potentially significant differences from that observed in HO-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ponka P (1999) Am J Med Sci 318:241–256

    Article  CAS  PubMed  Google Scholar 

  2. Antonini E, Brunori M (1971) In: Neuberger A, Tatum EL (eds) Frontiers of biology. North-Holland Publishing Company, Amsterdam, pp 43–47

  3. Dawson JH, Sono M (1987) Chem Rev 87:1255–1276

    Article  CAS  Google Scholar 

  4. Lukat-Rodgers GS, Rodgers KR (1998) J Biol Inorg Chem 3:274–281

    Article  CAS  Google Scholar 

  5. Craven PA, DeRubertis FR (1983) Biochim Biophys Acta 745:310–321

    CAS  PubMed  Google Scholar 

  6. Ignarro LJ, Degnan JN, Baricos WH, Kadowitz PJ, Wolin MS (1982) Biochim Biophys Acta 718:49–59

    CAS  PubMed  Google Scholar 

  7. Sassa S (2006) J Clin Biochem Nutr 38:138–155

    Article  CAS  Google Scholar 

  8. Kumar S, Bandyopadhyay U (2005) Toxicol Lett 157:175–188

    Article  CAS  PubMed  Google Scholar 

  9. Imlay JA (2003) Annu Rev Microbiol 57:395–418

    Article  CAS  PubMed  Google Scholar 

  10. Tenhunen R, Marver HS, Schmid R (1969) J Biol Chem 244:6388–6394

    CAS  PubMed  Google Scholar 

  11. Ortiz de Montellano PR (1998) Acc Chem Res 31:543–549

    Article  CAS  Google Scholar 

  12. Bianchetti CM, Yi L, Ragsdale SW, Phillips Jr GN (2007) J Biol Chem 282:37624–37631

    Article  CAS  PubMed  Google Scholar 

  13. Schuller DJ, Wilks A, Ortiz de Montellano PR, Poulos TL (1999) Nat Struct Biol 6:860–867

    Article  CAS  PubMed  Google Scholar 

  14. Lad L, Schuller DJ, Shimizu H, Friedman J, Li H, Ortiz de Montellano PR, Poulos TL (2003) J Biol Chem 278:7834–7843

    Article  CAS  PubMed  Google Scholar 

  15. Yoshida T, Kikuchi G (1978) J Biol Chem 253:4230–4236

    CAS  PubMed  Google Scholar 

  16. Maines MD, Trakshel GM, Kutty RK (1986) J Biol Chem 261:411–419

    CAS  PubMed  Google Scholar 

  17. Maines MD (1997) Annu Rev Pharmacol Toxicol 37:517–554

    Article  CAS  PubMed  Google Scholar 

  18. Ewing JF, Maines MD (1992) Mol Cell Neurosci 3:559–570

    Article  CAS  PubMed  Google Scholar 

  19. McCoubrey WK Jr, Huang TJ, Maines MD (1997) J Biol Chem 272:12568–12574

    Article  CAS  PubMed  Google Scholar 

  20. Zhang L, Guarente L (1995) EMBO J 14:313–320

    CAS  PubMed  Google Scholar 

  21. Lathrop JT, Timko MP (1993) Science 259:522–525

    Article  CAS  PubMed  Google Scholar 

  22. Qi Z, Hamza I, O’Brian MR (1999) Proc Natl Acad Sci USA 96:13056–13061

    Article  CAS  PubMed  Google Scholar 

  23. Ogawa K, Sun J, Taketani S, Nakajima O, Nishitani C, Sassa S, Hayashi N, Yamamoto M, Shibahara S, Fujita H, Igarashi K (2001) EMBO J 20:2835–2843

    Article  CAS  PubMed  Google Scholar 

  24. Yang J, Ishimori K, O’Brian MR (2005) J Biol Chem 280:7671–7676

    Article  CAS  PubMed  Google Scholar 

  25. Lee HC, Hon T, Lan C, Zhang L (2003) Mol Cell Biol 23:5857–5866

    Article  CAS  PubMed  Google Scholar 

  26. Hon T, Hach A, Lee HC, Cheng T, Zhang L (2000) Biochem Biophys Res Commun 273:584–591

    Article  CAS  PubMed  Google Scholar 

  27. Munakata H, Sun J-Y, Yoshida K, Nakatani T, Honda E, Hayakawa S, Furuyama K, Hayashi N (2004) J Biochem 136:233–238

    Article  CAS  PubMed  Google Scholar 

  28. Yi L, Ragsdale SW (2007) J Biol Chem 282:21056–21067

    Article  CAS  PubMed  Google Scholar 

  29. Berry EA, Trumpower BL (1987) Anal Biochem 161:1–15

    Article  CAS  PubMed  Google Scholar 

  30. Elliot JI, Brewer JM (1978) Arch Biochem Biophys 190:351–357

    Article  Google Scholar 

  31. Brill AS, Williams JP (1961) Biochem J 78:246–253

    CAS  PubMed  Google Scholar 

  32. Ishikawa K, Takeuchi N, Takahashi S, Matera KM, Sato M, Shibahara S, Rousseau DL, Ikeda-Saito M, Yoshida T (1995) J Biol Chem 270:6345–6350

    Article  CAS  PubMed  Google Scholar 

  33. Ishikawa K, Mansfield Matera K, Zhou H, Fujii H, Sato M, Yoshimura T, Ikeda-Saito M, Yoshida T (1998) J Biol Chem 273:4317–4322

    Article  CAS  PubMed  Google Scholar 

  34. Cheesman MR, Greenwood C, Thomson AJ (1991) Adv Inorg Chem 36:201–255

    Article  CAS  Google Scholar 

  35. Mino Y, Wariishi H, Blackburn NJ, Loehr TM, Gold MH (1988) J Biol Chem 263:7029–7036

    CAS  PubMed  Google Scholar 

  36. Morikis D, Champion PM, Springer BA, Egeberg KD, Sligar SG (1990) J Biol Chem 265:12143–12145

    CAS  PubMed  Google Scholar 

  37. Carey PR (1982) Biochemical applications of Raman and Resonance Raman spectroscopies. Academic Press, New York

    Google Scholar 

  38. Dhawan IK, Shelver D, Thorsteinsson MV, Roberts GP, Johnson MK (1999) Biochemistry 38:12805–12813

    Article  CAS  PubMed  Google Scholar 

  39. Vickery L, Salmon A, Sauer K (1975) Biochim Biophys Acta 386:87–98

    CAS  PubMed  Google Scholar 

  40. Vickery L, Nozawa T, Sauer K (1976) J Am Chem Soc 98:351–357

    Article  CAS  PubMed  Google Scholar 

  41. Takahashi S, Wang J, Rousseau DL, Ishikawa K, Yoshida T, Host JR, Ikeda-Saito M (1994) J Biol Chem 269:1010–1014

    CAS  PubMed  Google Scholar 

  42. Asher SA, Schuster TM (1979) Biochemistry 18:5377–5387

    Article  CAS  PubMed  Google Scholar 

  43. Feis A, Marzocchi MP, Paoli M, Smulevich G (1994) Biochemistry 33:4577–4583

    Article  CAS  PubMed  Google Scholar 

  44. Uchida K, Shimizu T, Makino R, Sakaguchi K, Iizuka T, Ishimura Y (1983) J Biol Chem 258:2519–2525

    CAS  PubMed  Google Scholar 

  45. Lad L, Wang J, Li H, Friedman J, Bhaskar B, Ortiz de Montellano PR, Poulos TL (2003) J Mol Biol 330:527–538

    Article  CAS  PubMed  Google Scholar 

  46. Fujii H, Zhang X, Tomita T, Ikeda-Saito M, Yoshida T (2001) J Am Chem Soc 123:6475–6484

    Article  CAS  PubMed  Google Scholar 

  47. Sugishima M, Sakamoto H, Higashimoto Y, Omata Y, Hayashi S, Noguchi M, Fukuyama K (2002) J Biol Chem 277:45086–45090

    Article  CAS  PubMed  Google Scholar 

  48. Sato H, Sugishima M, Sakamoto H, Higashimoto Y, Shimokawa C, Fukuyama K, Palmer G, Noguchi M (2009) Biochem J 419:339–345

    Article  CAS  PubMed  Google Scholar 

  49. Matsui T, Furukawa M, Unno M, Tomita T, Ikeda-Saito M (2005) J Biol Chem 280:2981–2989

    Article  CAS  PubMed  Google Scholar 

  50. Dawson JH, Andersson LA, Sono M (1982) J Biol Chem 257:3606–3617

    CAS  PubMed  Google Scholar 

  51. Sono M, Andersson LA, Dawson JH (1982) J Biol Chem 257:8308–8320

    CAS  PubMed  Google Scholar 

  52. Pazicni S, Lukat-Rodgers GS, Oliveriusová J, Rees KA, Parks RB, Clark RW, Rodgers KR, Kraus JP, Burstyn JN (2004) Biochemistry 43:14684–14695

    Article  CAS  PubMed  Google Scholar 

  53. Roach MP, Pond AE, Thomas MR, Boxer SG, Dawson JH (1999) J Am Chem Soc 121:12088–12093

    Article  CAS  Google Scholar 

  54. Mowat CG, Miles CS, Munro AW, Cheesman MR, Quaroni LG, Reid GA, Chapman SK (2000) J Biol Inorg Chem 5:584–592

    Article  CAS  PubMed  Google Scholar 

  55. Shelver D, Thorsteinsson MV, Kerby RL, Chung S-Y, Roberts GP, Reynolds MF, Parks RB, Burstyn JN (1999) Biochemistry 38:2669–2678

    Article  CAS  PubMed  Google Scholar 

  56. Aono S, Ohkubo K, Matsuo T, Nakajima H (1998) J Biol Chem 273:25757–25764

    Article  CAS  PubMed  Google Scholar 

  57. Pazicni S, Cherney MM, Lukat-Rodgers GS, Oliveriusová J, Rodgers KR, Kraus JP, Burstyn JN (2005) Biochemistry 44:16785–16795

    Article  CAS  PubMed  Google Scholar 

  58. Clark RW, Youn H, Parks RB, Cherney MM, Roberts GP, Burstyn JN (2004) Biochemistry 43:14149–14160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institutes of Health (grant GM 64631 to T.C.B. and grant R21HL089837 to S.W.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Brunold.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 258 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardner, J.D., Yi, L., Ragsdale, S.W. et al. Spectroscopic insights into axial ligation and active-site H-bonding in substrate-bound human heme oxygenase-2. J Biol Inorg Chem 15, 1117–1127 (2010). https://doi.org/10.1007/s00775-010-0672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0672-8

Keywords

Navigation