Skip to main content

Advertisement

Log in

Critical role of tyrosine 79 in the fluorescence resonance energy transfer and terbium(III)-dependent self-assembly of ciliate Euplotes octocarinatus centrin

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Ciliate Euplotes octocarinatus centrin (EoCen) is a member of the EF-hand superfamily of calcium-binding proteins. It has been proven, using Tb3+ as a fluorescence probe, that EoCen has four calcium-binding sites. The sensitized emission arises from nonradiative energy transfer between the three tyrosine residues (Tyr46, Tyr72, and Tyr79) of the N-terminal half and the bound Tb3+ ions. To determine the most critical of the three tyrosine residues for the process of fluorescence resonance energy transfer, six mutants of the N-terminal domain of EoCen, which contain one (N-Tyr46/N-Tyr72/N-Tyr79) or two (N-Y46F/N-Y72F/N-Y79F) tyrosine residues, were obtained by site-directed mutagenesis. The aromatic residue-sensitized Tb3+ fluorescence of N-Y79F was most affected, displaying a 50% reduction compared with wild-type N-EoCen. Among the tyrosines, Tyr79 is the shortest mean distance from the protein-bound Tb3+ (at sites I/II), as calculated via the Förster mechanism. The steady-state and time-resolved fluorescence parameters of the wild-type N-EoCen and the three double mutants suggest that Tyr79, which exists in a hydrophobic environment, has the highest quantum yield and a relatively long average lifetime. The decay of Tyr79 is the least heterogeneous among the three tyrosine residues. In addition, molecular modeling shows that a critical hydrogen bond is formed between the 4-hydroxyl group of Tyr79 and the oxygen from the side chains of the residue Asn39. Kinetic experiments on tyrosine and Tb3+ fluorescence demonstrate that tyrosine fluorescence quenching is largely due to the self-assembly of EoCen, and that the quenching degrees of the mutants differ. Resonance light scattering and crosslinking analysis carried out on the full-length single mutants (Y46F, Y72F, and Y79F) showed that Tyr79 also plays the most important role in the Tb3+-dependent self-assembly of EoCen among the three tyrosines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CaM:

Calmodulin

EoCen:

Wild-type ciliate Euplotes octocarinatus centrin

FRET:

Fluorescence resonance energy transfer

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

IPTG:

Isopropyl-d-thiogalactopyranoside

LB:

Luria–Bertani

Phe:

Phenylalanine

PBS:

Phosphate-buffered saline

RLS:

Resonance light scattering

TNS:

2-pToluidinylnaphthalene-6-sulfonate

N-EoCen:

N-Terminal domain (1–101) of wild-type EoCen

Y46F/Y72F/Y79F:

The three single mutants of full-length EoCen in which one tyrosine (Y) residue has been replaced by phenylalanine (F)

N-Y46F/N-Y72F/N-Y79F:

The three single mutants of N-EoCen in which one tyrosine (Y) residue has been replaced by phenylalanine (F), each of which contains two tyrosine residues

N-Try46/N-Tyr72/N-Tyr79:

The three double mutants of N-EoCen, each of which contains a single tyrosine residue

Tyr:

Tyrosine

TEMED:

N,N,N′,N′-Tetramethylethylenediamine

References

  1. Salisbury JL, Baron A, Surek B, Melkonian M (1984) J Cell Biol 99:962–970

    Article  CAS  PubMed  Google Scholar 

  2. Salisbury JL (1995) Curr Opin Cell Biol 7:39–45

    Article  CAS  PubMed  Google Scholar 

  3. Salisbury JL, Kelly MS, Busby R, Springett M (2002) Curr Biol 12:1287–1292

    Article  CAS  PubMed  Google Scholar 

  4. Schieble E, Bornens M (1995) Trends Cell Biol 5:197–201

    Article  Google Scholar 

  5. Wolfrum U, Geisl A, Pulvermüller A (2002) Centrins, a novel group of Ca2+-binding proteins in vertrbrate photoreceptor cells. In: Baehr W, Palczewski K (eds) Photoreceptors and calcium. Kluwer, New York, pp 155–178

  6. Tourbez M, Firanescu C, Yang A, Unipan L, Duchambon P, Blouquit Y, Craescu CT (2004) J Biol Chem 279:47672–47680

    Article  CAS  PubMed  Google Scholar 

  7. He XJ, Feng JY, Wang W, Chai BF, Yang BS, Liang AH (2004) Acta Zool Sin 50:47–451

    Google Scholar 

  8. Wang ZJ, Zhao YQ, Ren LX, Li GT, Liang AH, Yang BS (2007) J Photochem Photobiol A 186:178–186

    Article  CAS  Google Scholar 

  9. Zhao YQ, Feng JY, Liang AH, Yang BS (2009) Spectrochim Acta A 71:1756–1761

    Article  Google Scholar 

  10. Evans CH (1990) Biochemistry of lanthanides. Plenum, New York

  11. Wang K, Li RC, Cheng Y, Zhu B (1999) Coord Chem Rev 190–192:297–308

    Article  Google Scholar 

  12. Selvin PR (2000) Nat Struct Biol 7:730–734

    Article  CAS  PubMed  Google Scholar 

  13. Selvin PR (1996) IEEE J Select Topics Quantum Electron 2:1077–1087

    Article  CAS  Google Scholar 

  14. Horrocks WD, Sudnick DR (1981) Acc Chem Res 14:384–392

    Article  CAS  Google Scholar 

  15. Reuben J (1979) In: Gschneider KA, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 3. North-Holland, Amsterdam, pp 515–552

  16. Bertini I, Gupta YK, Luchinat C, Parigi G, Peana M, Sgheri L, Yuan J (2007) J Am Chem Soc 129:12786–12794

    Article  CAS  PubMed  Google Scholar 

  17. Bertini I, Kursula P, Luchinat C, Parigi G, Vahokoski J, Wilmanns M, Yuan J (2009) J Am Chem Soc 131:5134–5144

    Article  CAS  PubMed  Google Scholar 

  18. Kilhoffer MC, Demaille JG, Gĕrard D (1981) Biochemistry 20:4407–4414

    Article  CAS  PubMed  Google Scholar 

  19. Bruno J, Horrocks WD, Zauhar RJ (1992) Biochemistry 31:7016–7026

    Article  CAS  PubMed  Google Scholar 

  20. Wiech H, Geier BM, Paschke T, Spang A, Grein K, Steinkötter J, Melkonian M, Schiebel E (1996) J Biol Chem 271:22453–22461

    Article  CAS  PubMed  Google Scholar 

  21. Duan L, Zhao YQ, Wang ZJ, Li GT, Liang AH, Yang BS (2008) J Inorg Biochem 102:268–277

    Article  CAS  PubMed  Google Scholar 

  22. He ML, Rambeck WA (2000) Arch Tierernahr 53:323–334

    PubMed  Google Scholar 

  23. Blouquit Y, Duchambon P, Brun E, Marco S, Rusconi F, Sicard-Roselli C (2007) Free Radic Biol Med 43:216–228

    Article  CAS  PubMed  Google Scholar 

  24. Ren LX, Zhao YQ, Feng JY, He XJ, Liang AH, Yang BS (2006) Chin J Inorg Chem 22:87–90

    CAS  Google Scholar 

  25. Mach H, Middaugh CR, Lewis RV (1992) Anal Biochem 200:74–80

    Article  CAS  PubMed  Google Scholar 

  26. Eisinger J (1969) Photochem Photobiol 9:247–258

    Article  CAS  PubMed  Google Scholar 

  27. Chen RF (1967) Anal Lett 1:35–42

    CAS  Google Scholar 

  28. Föster T (1948) Ann Phys (Leipzig) 2:55–75

    Google Scholar 

  29. Horrocks WD, Collier WE (1981) J Am Chem Soc 103:2856–2862

    Article  CAS  Google Scholar 

  30. McClure WO, Edelman GM (1966) Biochemistry 5:1908–1919

    Article  CAS  PubMed  Google Scholar 

  31. Durussela I, Blouquitb Y, Middendorpc S, Craescub CT, Cox JA (2000) FEBS Lett 472:208–212

    Article  Google Scholar 

  32. Salisbury JL (1998) J Eukaryot Microbiol 45:28–32

    Article  CAS  PubMed  Google Scholar 

  33. Mallamace F, Micali N, Romeo A, Scolaro LM (2000) Curr Opin Coll Interf Sci 5:49–55

    Article  CAS  Google Scholar 

  34. Yang A, Miron S, Duchambon P, Assairi L, Blouquit Y, Craescu CT (2006) Biochemistry 45:880–889

    Article  CAS  PubMed  Google Scholar 

  35. Łukomska J, Rzeska A, Malicka J, Wiczk W (2001) J Photochem Photobiol A Chem 143:135–139

    Article  Google Scholar 

  36. Ye YM, Lee HW, Yang W, Shealy S, Yang JJ (2005) J Am Chem Soc 127:3743–3750

    Article  CAS  PubMed  Google Scholar 

  37. Bogan AA, Thorn KS (1998) J Mol Biol 280:1–9

    Article  CAS  PubMed  Google Scholar 

  38. Daunderer C, Schliwa M, Gräf R (2001) Eur J Cell Biol 80:621–630

    Article  CAS  PubMed  Google Scholar 

  39. Levy YY, Lai EY, Remillard SP, Heintzelman MB, Fulton C (1996) Cell Motil Cytoskelet 33:298–323

    Article  CAS  Google Scholar 

  40. Salisbury JL (2004) Curr Biol 14:R27–R29

    Article  CAS  PubMed  Google Scholar 

  41. Srsen V, Merdes A (2006) Cell Div 1:26–30

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of PR China (No. 20901048 and No. 20771068), and the Natural Science Foundation of Shanxi Province (No. 2007011024). The Ph.D Programs Foundation of Ministry of Education of China (20091401110007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin-Sheng Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 310 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, L., Liu, W., Wang, ZJ. et al. Critical role of tyrosine 79 in the fluorescence resonance energy transfer and terbium(III)-dependent self-assembly of ciliate Euplotes octocarinatus centrin. J Biol Inorg Chem 15, 995–1007 (2010). https://doi.org/10.1007/s00775-010-0660-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0660-z

Keywords

Navigation