Skip to main content
Log in

EPR spectroscopy and catalase activity of manganese-bound DNA-binding protein from nutrient starved cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

DNA-binding proteins from nutrient-starved cells (DPS) protect cells from oxidative stress by removing H2O2 and iron. A new class of DPS-like proteins has recently been identified, with DPS-like protein from Sulfolobus solfataricus (SsDPS) being the best characterized to date. SsDPS protects cells from oxidative stress and is upregulated in response to H2O2 but also in response to iron depletion. The ferroxidase active site of SsDPS is structurally similar to the active sites of manganese catalase and rat liver arginase. The present work shows that the ferroxidase center in SsDPS binds two Mn2+ ions with K D = (1/K 1 K 2)1/2 = 48(3) μM. The binding constant of the second Mn2+ is significantly higher than that of the first, inducing dinuclear Mn(II) cluster formation for all but the lowest concentrations of added Mn2+. In competition experiments, equimolar amounts of Fe2+ were unable to displace the bound manganese. EPR spectroscopy of the Mn2 2+ cluster showed signals comparable to those of other characterized dimanganese clusters. The exchange coupling for the cluster was determined, J = −1.4(3) cm−1 (H = −2JS 1 S 2), and is within the range expected for a μ1,1-carboxylato bridge between the manganese ions. Manganese-bound SsDPS showed catalase activity at a rate 10–100 times slower than for manganese catalases. EPR spectra of SsDPS after addition of H2O2 showed the appearance of an intermediate in the reaction with H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DPS:

DNA-binding protein from nutrient-starved cells

EPR:

Electron paramagnetic resonance

MnCat:

Manganese catalase

ROS:

Reactive oxygen species

SsDPS:

DNA-binding protein from nutrient-starved cells like protein from Sulfolobus solfataricus

References

  1. Fang FC (2004) Nat Rev Microbiol 2:820–832

    Article  CAS  PubMed  Google Scholar 

  2. Halsey TA, Vazquez-Torres A, Gravdahl DJ, Fang FC, Libby SJ (2004) Infect Immun 72:1155–1158

    Article  CAS  PubMed  Google Scholar 

  3. Li X, Pal U, Ramamoorthi N, Liu X, Desrosiers DC, Eggers CH, Anderson JF, Radolf JD, Fikrig E (2007) Mol Microbiol 63:694–710

    CAS  PubMed  Google Scholar 

  4. Grant RA, Filman DJ, Finkel SE, Kolter R, Hogle JM (1998) Nat Struct Biol 5:294–303

    Article  CAS  PubMed  Google Scholar 

  5. Smith JL (2004) Crit Rev Microbiol 30:173–185

    Article  CAS  PubMed  Google Scholar 

  6. Zhao G, Ceci P, Ilari A, Giangiacomo L, Laue TM, Chiancone E, Chasteen ND (2002) J Biol Chem 277:27689–27696

    Article  CAS  PubMed  Google Scholar 

  7. Lawson TL, Crow A, Lewin A, Yasmin S, Moore GR, Brun NEL (2009) Biochemistry 48:9031–9039

    Article  CAS  PubMed  Google Scholar 

  8. Crow A, Lawson TL, Lewin A, Moore GR, Brun NEL (2009) J Am Chem Soc 131:6808–6813

    Article  CAS  PubMed  Google Scholar 

  9. Wiedenheft B, Mosolf J, Willits D, Yeager M, Dryden KA, Young M, Douglas T (2005) Proc Natl Acad Sci USA 102:10551–10556

    Article  CAS  PubMed  Google Scholar 

  10. Gauss GH, Benas P, Wiedenheft B, Young M, Douglas T, Lawrence CM (2006) Biochemistry 45:10815–10827

    Article  CAS  PubMed  Google Scholar 

  11. Barynin VV, Whittaker MM, Antonyuk SV, Lamzin VS, Harrison PM, Artymiuk PJ, Whittaker JW (2001) Structure (Camb) 9:725–738

    Article  CAS  Google Scholar 

  12. Cama E, Emig FA, Ash DE, Christianson DW (2003) Biochemistry 42:7748–7758

    Article  CAS  PubMed  Google Scholar 

  13. Golynskiy MV, Gunderson WA, Hendrich MP, Cohen SM (2006) Biochemistry 45:15359–15372

    Article  CAS  PubMed  Google Scholar 

  14. Pierce BS, Elgren TE, Hendrich MP (2003) J Am Chem Soc 125:8748–8759

    Article  CAS  PubMed  Google Scholar 

  15. Golombek AP, Hendrich MP (2003) J Magn Reson 165:33–48

    Article  CAS  PubMed  Google Scholar 

  16. Gunderson WA, Zatsman AI, Emerson JP, Farquhar ER, Que L Jr, Lipscomb JD, Hendrich MP (2008) J Am Chem Soc 130:14465–14467

    Google Scholar 

  17. Martell AE, Smith RM (eds) (1974) Critical stability constants, vol 1: amino acids. Plenum Press, New York, p 469

  18. Khangulov SV, Barynin VV, Antonyuk-Barynina SV (1990) Biochim Biophys Acta 1020:25–33

    Article  CAS  Google Scholar 

  19. Allgood GS, Perry JJ (1986) J Bacteriol 168:563–568

    CAS  PubMed  Google Scholar 

  20. Shank M, Barynin V, Dismukes GC (1994) Biochemistry 33:15433–15436

    Article  CAS  PubMed  Google Scholar 

  21. Meier AE, Whittaker MM, Whittaker JW (1996) Biochemistry 35:348–360

    Article  CAS  PubMed  Google Scholar 

  22. Khangulov SV, Pessiki PJ, Barynin VV, Ash DE, Dismukes GC (1995) Biochemistry 34:2015–2025

    Article  CAS  PubMed  Google Scholar 

  23. Smoukov SK, Telser J, Bernat BA, Rife CL, Armstrong RN, Hoffman BM (2002) J Am Chem Soc 124:2318–2326

    Article  CAS  PubMed  Google Scholar 

  24. Boelrijk AE, Dismukes GC (2000) Inorg Chem 39:3020–3028

    Article  CAS  PubMed  Google Scholar 

  25. Wu WAJ, Penner-Hahn JE, Pecoraro VL (2004) Chem Rev 104:903–938

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Hendrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayden, J.A., Hendrich, M.P. EPR spectroscopy and catalase activity of manganese-bound DNA-binding protein from nutrient starved cells. J Biol Inorg Chem 15, 729–736 (2010). https://doi.org/10.1007/s00775-010-0640-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0640-3

Keywords

Navigation