Skip to main content
Log in

Submolecular unfolding units of Pseudomonas aeruginosa cytochrome c-551

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Hydrogen exchange rates for backbone amide protons of oxidized Pseudomonas aeruginosa cytochrome c-551 (P. aeruginosa cytochrome c) have been measured in the presence of low concentrations of the denaturant guanidine hydrochloride. Analysis of the data has allowed identification of submolecular unfolding units known as foldons. The highest-energy foldon bears similarity to the proposed folding intermediate for P. aeruginosa cytochrome c. Parallels are seen to the foldons of the structurally homologous horse cytochrome c, although the heme axial methionine-bearing loop has greater local stability in P. aeruginosa cytochrome c, in accord with previous folding studies. Regions of low local stability are observed to correspond with regions that interact with redox partners, providing a link between foldon properties and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Winkler JR (2004) Curr Opin Chem Biol 8:169–174

    Article  PubMed  CAS  Google Scholar 

  2. Travaglini-Allocatelli C, Gianni S, Brunori M (2004) Trends Biochem Sci 29:535–541

    Article  PubMed  CAS  Google Scholar 

  3. Ptitsyn OB (1998) J Mol Biol 278:655–666

    Article  PubMed  CAS  Google Scholar 

  4. Russell BS, Melenkivitz R, Bren KL (2000) Proc Natl Acad Sci USA 97:8312–8317

    Article  PubMed  CAS  Google Scholar 

  5. Russell BS, Bren KL (2002) J Biol Inorg Chem 7:909–916

    Article  PubMed  CAS  Google Scholar 

  6. Hong XL, Dixon DW (1989) FEBS Lett 246:105–108

    Article  PubMed  CAS  Google Scholar 

  7. Rosell FI, Ferrer JC, Mauk AG (1998) J Am Chem Soc 120:11234–11245

    Article  CAS  Google Scholar 

  8. Bartalesi L, Bertini I, Ghosh K, Rosato A, Turano P (2002) J Mol Biol 321:693–701

    Article  PubMed  CAS  Google Scholar 

  9. Yamamoto Y, Terui N, Tachiiri N, Minakawa K, Matsuo H, Kameda T, Hasegawa J, Sambongi Y, Uchiyama S, Kobayashi Y, Igarashi Y (2002) J Am Chem Soc 124:11574–11575

    Article  PubMed  CAS  Google Scholar 

  10. Baxter SM, Fetrow JS (1999) Biochemistry 38:4493–4503

    Article  PubMed  CAS  Google Scholar 

  11. Fetrow JS, Baxter SM (1999) Biochemistry 38:4480–4492

    Article  PubMed  CAS  Google Scholar 

  12. Bai YW, Sosnick TR, Mayne L, Englander SW (1995) Science 269:192–197

    Article  PubMed  CAS  Google Scholar 

  13. Russell BS, Zhong L, Bigotti MG, Cutruzzolà F, Bren KL (2003) J Biol Inorg Chem 8:156–166

    Article  PubMed  CAS  Google Scholar 

  14. Bartalesi I, Bertini I, Di Rocco G, Ranieri A, Rosato A, Vanarotti M, Vasos PR, Viezzoli MS (2004) J Biol Inorg Chem 9:600–608

    Article  PubMed  CAS  Google Scholar 

  15. Bartalesi I, Rosato A, Zhang W (2003) Biochemistry 42:10923–10930

    Article  PubMed  CAS  Google Scholar 

  16. Dobson CM, Sali A, Karplus M (1998) Angew Chem Int Ed Engl 37:868–893

    Article  Google Scholar 

  17. Dill KA, Chan HS (1997) Nat Struct Biol 4:10–19

    Article  PubMed  CAS  Google Scholar 

  18. Dinner AR, Sali A, Smith LJ, Dobson CM, Karplus M (2000) Trends Biochem Sci 25:331–339

    Article  PubMed  CAS  Google Scholar 

  19. Matsuura Y, Takano T, Dickerson RE (1982) J Mol Biol 156:389–409

    Article  PubMed  CAS  Google Scholar 

  20. Bushnell GW, Louie GV, Brayer GD (1990) J Mol Biol 214:585–595

    Article  PubMed  CAS  Google Scholar 

  21. Kraulis PJ (1991) J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  22. Krishna MMG, Hoang L, Lin Y, Englander SW (2004) Methods 34:51–64

    Article  PubMed  CAS  Google Scholar 

  23. Weinkam P, Zong CH, Wolynes PG (2005) Proc Natl Acad Sci USA 102:12401–12406

    Article  PubMed  CAS  Google Scholar 

  24. Englander SW, Kallenbach NR (1983) Q Rev Biophys 16:521–655

    Article  PubMed  CAS  Google Scholar 

  25. Maity H, Lim WK, Rumbley JN, Englander SW (2003) Protein Sci 12:153–160

    Article  PubMed  CAS  Google Scholar 

  26. Maity H, Maity M, Englander SW (2004) J Mol Biol 343:223–233

    Article  PubMed  CAS  Google Scholar 

  27. Wen X, Bren KL (2005) Inorg Chem 44:8587–8593

    Article  PubMed  CAS  Google Scholar 

  28. Morar AS, Kakouras D, Young GB, Boyd J, Pielak GJ (1999) J Biol Inorg Chem 4:220–222

    Article  PubMed  CAS  Google Scholar 

  29. Pace CN, Scholtz JM (1997) In: Creighton TE (ed) Protein structure: a practical approach. IRL, Oxford, pp 299–321

    Google Scholar 

  30. Timkovich R, Cai ML (1993) Biochemistry 32:11516–11523

    Article  PubMed  CAS  Google Scholar 

  31. Hvidt A, Nielsen SO (1966) Adv Protein Chem 21:287–386

    PubMed  CAS  Google Scholar 

  32. Bai YW, Milne JS, Mayne L, Englander SW (1993) Proteins 17:75–86

    Article  PubMed  CAS  Google Scholar 

  33. Zhang Y-Z (1995) University of Pennsylvania

  34. Myers JK, Pace CN, Scholtz JM (1995) Protein Sci 4:2138–2148

    PubMed  CAS  Google Scholar 

  35. Wen X, Patel KM, Russell BS, Bren KL (2007) Biochemistry 46:2537–2544

    Article  PubMed  CAS  Google Scholar 

  36. Bigotti MG, Allocatelli CT, Staniforth RA, Arese M, Cutruzzolà F, Brunori M (1998) FEBS Lett 425:385–390

    Article  PubMed  CAS  Google Scholar 

  37. Gianni S, Travaglini-Allocateli C, Cutruzzolà F, Brunori M, Shastry MCR, Roder H (2003) J Mol Biol 330:1145–1152

    Article  PubMed  CAS  Google Scholar 

  38. Borgia A, Bonivento D, Travaglini-Allocatelli C, Di Matteo A, Brunori M (2006) J Biol Chem 281:9331–9336

    Article  PubMed  CAS  Google Scholar 

  39. Gianni S, Brunori M, Travaglini-Allocatelli C (2001) Protein Sci 10:1685–1688

    Article  PubMed  CAS  Google Scholar 

  40. Gianni S, Travaglini-Allocatelli C, Cutruzzolà F, Bigotti MG, Brunori M (2001) J Mol Biol 309:1177–1187

    Article  PubMed  CAS  Google Scholar 

  41. Pelletier H, Kraut J (1992) Science 258:1748–1755

    Article  PubMed  CAS  Google Scholar 

  42. Pearl NM, Jacobson T, Arisa M, Vitello LB, Erman JE (2007) Biochemistry 46:8263–8272

    Article  PubMed  CAS  Google Scholar 

  43. Antalis TM, Palmer G (1982) J Biol Chem 257:6194–6206

    PubMed  CAS  Google Scholar 

  44. Lappalainen P, Watmough NJ, Greenwood C, Saraste M (1995) Biochemistry 34:5824–5830

    Article  PubMed  CAS  Google Scholar 

  45. Cutruzzola F, Arese M, Ranghino G, van Pouderoyen G, Canters G, Brunori M (2002) J Inorg Biochem 88:353–361

    Article  PubMed  CAS  Google Scholar 

  46. Crowley PB, Ubbink M (2003) Acc Chem Res 36:723–730

    Article  PubMed  CAS  Google Scholar 

  47. Liang ZX, Nocek JM, Huang K, Hayes RT, Kurnikov IV, Beratan DN, Hoffman BM (2002) J Am Chem Soc 124:6849–6859

    Article  PubMed  CAS  Google Scholar 

  48. Crowley PB, Carrondo MA (2004) Proteins 55:603–612

    Article  PubMed  CAS  Google Scholar 

  49. Prudencio M, Ubbink M (2004) J Mol Recognit 17:524–539

    Article  PubMed  CAS  Google Scholar 

  50. Zhuravleva AV, Korzhnev DM, Kupce E, Arseniev AS, Billeter M, Orekhov VY (2004) J Mol Biol 342:1599–1611

    Article  PubMed  CAS  Google Scholar 

  51. Low DW, Gray HB, Duus JØ (1997) J Am Chem Soc 119:1–5

    Article  CAS  Google Scholar 

  52. Michel LV, Ye T, Bowman SEJ, Levin BD, Hahn MA, Russell BS, Elliott SJ, Bren KL (2007) Biochemistry 46:11753–11760

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH grant R01-GM63170.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kara L. Bren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material (PDF 329 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, L.V., Bren, K.L. Submolecular unfolding units of Pseudomonas aeruginosa cytochrome c-551. J Biol Inorg Chem 13, 837–845 (2008). https://doi.org/10.1007/s00775-008-0370-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0370-y

Keywords

Navigation