Skip to main content
Log in

Validation of density functional modeling protocols on experimental bis(μ-oxo)/μ-η22-peroxo dicopper equilibria

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The bis(μ-oxo)/μ-η22-peroxo equilibria for seven supported Cu2O2 cores were studied with different hybrid and nonhybrid density functional theory models, namely, BLYP, mPWPW, TPSS, TPSSh, B3LYP, mPW1PW, and MPW1K. Supporting ligands 3,3′-iminobis(N,N-dimethylpropylamine), N,N,N′,N′,N″-pentamethyldipropylenetriamine, N-[2-(pyridin-2-yl)ethyl]-N,N,N′-trimethylpropane-1,3-diamine, bis[2-(2-pyridin-2-yl)ethyl]methylamine, bis[2-(4-methoxy-2-pyridin-2-yl)ethyl]methylamine, bis[2-(4-N,N-dimethylamino-2-pyridin-2-yl)ethyl]methylamine, and 1,4,7-triisopropyl-1,4,7-triazacyclononane were chosen on the basis of the availability of experimental data for comparison. Density functionals were examined with respect to their ability accurately to reproduce experimental properties, including, in particular, geometries and relative energies for the bis(μ-oxo) and side-on peroxo forms. While geometries from both hybrid and nonhybrid functionals were in good agreement with experiment, the incorporation of Hartree–Fock (HF) exchange in hybrid density functionals was found to have a large, degrading effect on predicted relative isomer energies. Specifically, hybrid functionals predicted the μ-η22-peroxo isomer to be too stable by roughly 5–10 kcal mol−1 for each 10% of HF exchange incorporated into the model. Continuum solvation calculations predict electrostatic effects to favor bis(μ-oxo) isomers by 1–4 kcal mol−1 depending on ligand size, with larger ligands having smaller differential solvation effects. Analysis of computed molecular partition functions suggests that nonzero measured entropies of isomerization are likely to be primarily associated with interactions between molecular solutes and their first solvation shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bertini I, Gray HB, Stiefel EI, Valentine JS (eds) (2007) Biological inorganic chemistry. University Science Books, Sausalito, pp 338–413

  2. Solomon EI, Baldwin MJ, Lowery MD (1992) Chem Rev 92:521–542

    Article  CAS  Google Scholar 

  3. Kitajima N, Moro-oka Y (1994) Chem Rev 94:737–757

    Article  CAS  Google Scholar 

  4. Fox S, Karlin KD (1995) In: Valentine JS, Foote CS, Greenberg A, Liebman JF (eds) Active oxygen in biochemistry. Blackie/Chapman & Hall, Glasgow, pp 188–231

    Google Scholar 

  5. Kaim W, Rall J (1996) Angew Chem Int Ed Engl 35:43–60

    Article  CAS  Google Scholar 

  6. Klinman JP (1996) Chem Rev 96:2541–2562

    Article  PubMed  CAS  Google Scholar 

  7. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2605

    Article  PubMed  CAS  Google Scholar 

  8. Solomon EI, Chen P, Metz M, Lee SK, Palmer AE (2001) Angew Chem Int Ed Engl 40:4570–4590

    Article  PubMed  CAS  Google Scholar 

  9. Gamez P, Koval IA, Reedijk J (2004) Dalton Trans 4079–4088

  10. Mirica LM, Ottenwaelder X, Stack TDP (2004) Chem Rev 104:1013–1045

    Article  PubMed  CAS  Google Scholar 

  11. Solomon EI, Tuczek F, Root DE, Brown CA (1994) Chem Rev 94:827–856

    Article  CAS  Google Scholar 

  12. Cole AP, Mahadevan V, Mirica LM, Ottenwaelder X, Stack TDP (2005) Inorg Chem 44:7345–7364

    Article  PubMed  CAS  Google Scholar 

  13. Kitajima N, Fujisawa K, Fujimoto C, Morooka Y, Hashimoto S, Kitagawa T, Torinmi K, Tatsumi K, Nakamura A (1992) J Am Chem Soc 114:1277–1291

    Article  CAS  Google Scholar 

  14. Mahapatra S, Halfen JA, Wilkinson EC, Pan G, Cramer CJ, Que L, Tolman WB (1995) J Am Chem Soc 117:8865–8866

    Article  CAS  Google Scholar 

  15. Tolman WB (1997) Acc Chem Res 30:227–237

    Article  CAS  Google Scholar 

  16. Lewis EA, Tolman WB (2004) Chem Rev 104:1047–1076

    Article  PubMed  CAS  Google Scholar 

  17. Holland PL, Tolman WB (1999) Coord Chem Rev 192:855–869

    Article  Google Scholar 

  18. Halfen JA, Mahapatra S, Wilkinson EC, Kaderli S, Que L, Zuberbühler AD, Tolman WB (1996) Science 271:1397–1400

    Article  PubMed  CAS  Google Scholar 

  19. Cahoy J, Holland PL, Tolman WB (1999) Inorg Chem 38:2161–2168

    Article  PubMed  CAS  Google Scholar 

  20. Que L, Tolman WB (2002) Angew Chem Int Ed Engl 41:1114–1137

    Article  PubMed  CAS  Google Scholar 

  21. Hatcher LQ, Karlin KD (2004) J Biol Inorg Chem 9:669–683

    Article  PubMed  CAS  Google Scholar 

  22. Pidcock E, DeBeer S, Obias HV, Hedman B, Hodgson KO, Karlin KD, Solomon EI (1999) J Am Chem Soc 121:1870–1878

    Article  CAS  Google Scholar 

  23. Liang HC, Zhang CX, Henson MJ, Sommer RD, Hatwell KR, Kaderli S, Zuberbühler AD, Rheingold AL, Solomon EI, Karlin KD (2002) J Am Chem Soc 124:4170–4171

    Article  PubMed  CAS  Google Scholar 

  24. Henson MJ, Vance MA, Christina XZ, Liang HC, Karlin KD, Solomon EI (2003) J Am Chem Soc 125:5186–5192

    Article  PubMed  CAS  Google Scholar 

  25. Liang HC, Henson MJ, Hatcher LQ, Vance MA, Zhang CX, Lahti D, Kaderli S, Sommer RD, Rheingold AL, Zuberbühler AD, Solomon EI, Karlin KD (2004) Inorg Chem 43:4115–4117

    Article  PubMed  CAS  Google Scholar 

  26. Hatcher LQ, Vance MA, Narducci Sarjeant AA, Solomon EI, Karlin KD (2006) Inorg Chem 45:3004–3013

    Article  PubMed  CAS  Google Scholar 

  27. Mizuno M, Hayashi H, Fujinami S, Furutachi H, Nagatomo S, Otake S, Uozumi K, Suzuki M, Kitagawa T (2003) Inorg Chem 42:8534–8544

    Article  PubMed  CAS  Google Scholar 

  28. Mahadevan V, Henson MJ, Solomon EI, Stack TDP (2000) J Am Chem Soc 122:10249–10250

    Article  CAS  Google Scholar 

  29. Liang H-C, Zhang CX, Henson MJ, Sommer RD, Hatwell KR, Daderli S, Zuberbuehler AD, Rheingold AL, Solomon EI, Karlin KD (2002) J Am Chem Soc 124:4170–4171

    Article  PubMed  CAS  Google Scholar 

  30. Stack TDP (2003) Dalton Trans 1881–1889

  31. Costas M, Ribas X, Poater A, LopezValbuena JM, Xifra R, Company A, Duran M, Sola M, Llobet A, Corbella M, Uson MA, Mahia J, Solans X, Shan X, Benet-Buchholz J (2006) Inorg Chem 45:3569–3581

    Article  PubMed  CAS  Google Scholar 

  32. Company A, Lamata D, Poater A, Sola M, Rybak-Akimova EV, Que L, Fontrodona X, Parella T, Llobet A, Costas M (2006) Inorg Chem 45:5239–5241

    Article  PubMed  CAS  Google Scholar 

  33. Cramer CJ, Smith BA, Tolman WB (1996) J Am Chem Soc 118:11283–11287

    Article  CAS  Google Scholar 

  34. Mahapatra S, Halfen JA, Wilkinson EC, Pan G, Wang X, Young VG, Cramer CJ, Que L, Tolman WB (1996) J Am Chem Soc 118:11555–11574

    Article  CAS  Google Scholar 

  35. Bérces A (1997) Inorg Chem 36:4831–4837

    Article  PubMed  Google Scholar 

  36. Yoshizawa K, Ohta T, Yamabe T (1997) Bull Chem Soc Jpn 70:1911–1917

    Article  CAS  Google Scholar 

  37. Flock M, Pierloot K (1999) J Phys Chem A 103:95–102

    Article  CAS  Google Scholar 

  38. Henson MJ, Mukherjee M, Root DE, Stack TDP, Solomon EI (1999) J Am Chem Soc 121:10332–10345

    Article  CAS  Google Scholar 

  39. Holland PL, Cramer CJ, Wilkinson EC, Mahapatra S, Rodgers KR, Itoh S, Taki M, Fukuzumi S, Que L, Tolman WB (2000) J Am Chem Soc 122:792–802

    Article  CAS  Google Scholar 

  40. Lam BMT, Halfen JA, Young VG Jr, Hagadorn JR, Holland PL, Lledos A, Cucurull-Sanchez L, Novoa JJ, Alvarez S, Tolman WB (2000) Inorg Chem 39:4059–4072

    Article  PubMed  CAS  Google Scholar 

  41. Siegbahn PEM (2003) J Biol Inorg Chem 8:577–585

    PubMed  CAS  Google Scholar 

  42. Rode MF, Werner HJ (2005) Theor Chem Acc 114:309–317

    Article  CAS  Google Scholar 

  43. Cramer CJ, Wloch M, Piecuch P, Puzzarini C, Gagliardi L (2006) J Phys Chem A 110:1991–2004

    Article  PubMed  CAS  Google Scholar 

  44. Cramer CJ, Kinal A, Wloch M, Piecuch P, Gagliardi L (2006) J Phys Chem A 110:11557–11568

    Article  PubMed  CAS  Google Scholar 

  45. Aboelella NW, Gherman BF, Hill LMR, York JT, Holm N, Young VG Jr, Cramer CJ, Tolman WB (2006) J Am Chem Soc 128:3445–3458

    Article  PubMed  CAS  Google Scholar 

  46. Kowalski K, Piecuch PJ (2000) Chem Phys 113:5644–5652

    Article  CAS  Google Scholar 

  47. Piecuch P, Kowalski K (2000) In: Leszczynski J (ed) Computational chemistry: reviews of current trends, vol 5. World Scientific, Singapore, pp 1–104

  48. Kowalski K, Piecuch PJ (2000) Chem Phys 113:18–35

    Article  CAS  Google Scholar 

  49. Piecuch P, Kowalski K, Pimienta ISO, McGuire MJ (2002) Int Rev Phys Chem 21:527–655

    Article  CAS  Google Scholar 

  50. Piecuch P, Pimienta ISO, Fan PD, Kowalski K (2003) In: Maruani J, Lefebvre R, Brändas E (eds) Progress in theoretical chemistry and physics, vol 12. Kluwer, Dordrecht, pp 119–206

  51. Piecuch P, Kowalski K, Pimienta ISO, Fan PD, Lodriguito M, McGuire MJ, Kucharski SA, Kus T, Musial M (2004) Theor Chem Acc 112:349–393

    Article  CAS  Google Scholar 

  52. Dolg M, Wedig U, Stoll H, Preuss HJ (1987) Chem Phys 86:866–872

    Article  CAS  Google Scholar 

  53. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  54. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  55. Woon DE, Dunning TH (1995) J Chem Phys 103:4572–4585

    Article  CAS  Google Scholar 

  56. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  PubMed  CAS  Google Scholar 

  57. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  58. Perdew JP (1991) In: Ziesche P, Eschrig H (eds) Electronic structure of solids ‘91. Akademie, Berlin, pp 11–20

  59. Perdew J, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  60. Adamo C, Barone VJ (1998) Chem Phys 108:664–675

    Article  CAS  Google Scholar 

  61. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  PubMed  Google Scholar 

  62. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  63. Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) J Chem Phys 119:12129–12137

    Article  CAS  Google Scholar 

  64. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  65. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A 104:4811–4815

    Article  CAS  Google Scholar 

  66. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester

    Google Scholar 

  67. Ziegler T, Rauk A, Baerends EJ (1977) Theor Chim Acta 43:261–271

    Article  CAS  Google Scholar 

  68. Yamaguchi K, Jensen F, Dorigo A, Houk KN (1988) Chem Phys Lett 149:537–542

    Article  CAS  Google Scholar 

  69. Lim MH, Worthington SE, Dulles FJ, Cramer CJ (1996) In: Laird BB, Ross RB, Ziegler T (eds) Chemical applications of density functional theory, vol 629. American Chemical Society, Washington, pp 402–422

  70. Isobe H, Takano Y, Kitagawa Y, Kawakami T, Yamanaka S, Yamaguchi K, Houk KN (2002) Mol Phys 100:717–727

    Article  CAS  Google Scholar 

  71. Gräfenstein J, Cremer D (2001) Mol Phys 99:981–989

    Article  Google Scholar 

  72. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalamani G, Rega N, Petersson GA, Nagatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revisions C.01 and D.01. Gaussian, Wallingford

    Google Scholar 

  73. Miertus S, Scrocco E, Tomasi J (1981) J Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  74. Cramer CJ, Truhlar DG (eds) (1994) Structure and reactivity in aqueous solution, ACS symposium series 568. American Chemical Society, Washington, pp 10–23

  75. Cossi M, Scalamani G, Rega N, Barone VJ (2002) Chem Phys 117:43–54

    Article  CAS  Google Scholar 

  76. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158

    Article  CAS  Google Scholar 

  77. Cancés MT, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  Google Scholar 

  78. Cossi M, Barone V, Mennucci B, Tomasi J (1998) Chem Phys Lett 286:253–260

    Article  CAS  Google Scholar 

  79. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  80. Kelly CP, Cramer CJ, Truhlar DG (2006) J Phys Chem B 110:16066–16081

    Article  PubMed  CAS  Google Scholar 

  81. Liu X-Y, Palacios AA, Novoa JJ, Alvarez S (1998) Inorg Chem 37:1202–1212

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (CHE-0610183), the Arnold and Mabel Beckman Foundation, and the University of Minnesota Gleysteen Chemistry Summer Research Program. We thank Ben Gherman for technical assistance and Bill Tolman, Ken Karlin, Laura Gagliardi, Piotr Piecuch, and Kristin Pierloot for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Cramer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM (PDF 290 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewin, J.L., Heppner, D.E. & Cramer, C.J. Validation of density functional modeling protocols on experimental bis(μ-oxo)/μ-η22-peroxo dicopper equilibria. J Biol Inorg Chem 12, 1221–1234 (2007). https://doi.org/10.1007/s00775-007-0290-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0290-2

Keywords

Navigation