Skip to main content
Log in

Theoretical investigation on the oxidative chlorination performed by a biomimetic non-heme iron catalyst

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The present study is a part of an effort to understand the mechanism of the oxidative chlorination, as performed by a biomimetic non-heme iron complex. This catalytically active complex is generated from a peroxide and [(TPA)FeIIICl2]+ [TPA is tris(2-pyridylmethyl)amine]. The reaction catalyzed by [(TPA)FeCl2]+/ROOH involves either [(TPA)ClFeV=O]2+ or [(TPA)ClFeIV=O]+ as an intermediate. On the basis of density functional theory the reaction of these two possible catalysts with cyclohexane is investigated. A question addressed is how the competing hydroxylation of the substrate is avoided. It is demonstrated that the high-valent iron complex [(TPA)Cl–FeV=O]2+ is capable of stereospecific alkane chlorination, based on an ionic rather than on a radical pathway. In contrast, the results found for [(TPA)ClFeIV=O]+ cannot explain the experimental findings. In this case the transition states for chlorination and hydroxylation are energetically too close. The exclusive chlorination of the substrate by Cl–FeIV=O may be explained by an indirect or a direct effect, altering the position of the competing rebound barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gribble GW (2004) J Chem Educ 81:1441–1449

    Article  CAS  Google Scholar 

  2. Harris CM, Kannan R, Kopecka H, Harris TM (1985) J Am Chem Soc 107:6652–6658

    Article  CAS  Google Scholar 

  3. Grgurina I, Barca A, Cervigni S, Gallo M, Scaloni A, Pucci P (1994) Experientia 50:130–133

    Article  PubMed  CAS  Google Scholar 

  4. Raugei S, Carloni P (2006) J Phys Chem B 110:3747–3758

    Article  PubMed  CAS  Google Scholar 

  5. Butler A (1999) Coord Chem Rev 187:17–35

    Article  CAS  Google Scholar 

  6. Butler A (1998) Science 281:207–210

    Article  PubMed  CAS  Google Scholar 

  7. Keller S, Wage T, Hohaus K, Hölzer M, Eichhorn E, van Pee K-H (2000) Angew Chem Int Ed Engl 39:2300–2302

    Article  PubMed  CAS  Google Scholar 

  8. Yeh E, Garneau S, Walsh CT (2005) Proc Natl Acad Sci USA 102:3960–3965

    Article  PubMed  CAS  Google Scholar 

  9. Dong C, Flecks S, Unversucht S, Haupt C, van Pee K-H, Naismith JH (2005) Science 309:2216–2219

    Article  PubMed  CAS  Google Scholar 

  10. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee SK, Lehnert N, Neese F, Skulan AJ, Yang YS, Zhou J (2000) Chem Rev 100:235

    Article  PubMed  CAS  Google Scholar 

  11. Price JC, Barr EW, Tirupati B, Bollinger JM Jr, Krebs C (2003) Biochemistry 42:7497–7508

    Article  PubMed  CAS  Google Scholar 

  12. Hausinger RP (2004) Crit Rev Biochem Mol Biol 39:21–68

    Article  PubMed  CAS  Google Scholar 

  13. Vaillancourt FH, Yeh E, Vosburg DA, O’Connor SE, Walsh CT (2005) Nature 436:1191–1194

    Article  PubMed  CAS  Google Scholar 

  14. Vaillancourt FH, Yin J, Walsh CT (2005) Proc Natl Acad Sci USA 102:10111–10116

    Article  PubMed  CAS  Google Scholar 

  15. Blasiak LC, Vaillancourt FH, Walsh CT, Drennan CL (2006) Nature 440:368–371

    Article  PubMed  CAS  Google Scholar 

  16. Koehntop KD, Emerson JP, Que L Jr (2005) J Biol Inorg Chem 10:87–93

    Article  PubMed  CAS  Google Scholar 

  17. Bassan A, Borowski T, Siegbahn PEM (2004) Dalton Trans 20:3153–3162

    Article  PubMed  Google Scholar 

  18. Kojima T, Leising RA, Yan S, Que L Jr (1993) J Am Chem Soc 115:11328–11335

    Article  CAS  Google Scholar 

  19. MacFaul PA, Ingold KU, Wayner DDM, Que L Jr (1997) J Am Chem Soc 119:10594–10598

    Article  CAS  Google Scholar 

  20. Chen K, Que L Jr (2001) J Am Chem Soc 123:6327–6337

    Article  PubMed  CAS  Google Scholar 

  21. Bassan A, Blomberg MRA, Siegbahn PEM, Que L Jr (2002) J Am Chem Soc 124:11056–11063

    Article  PubMed  CAS  Google Scholar 

  22. Stephens PJ, Devlin FJ, Chablowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  23. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  24. Becke AD (1992) J Chem Phys 96:2155–2160

    Article  CAS  Google Scholar 

  25. Becke AD (1992) J Chem Phys 97:9173–9177

    Article  CAS  Google Scholar 

  26. Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter 37:785–789

    PubMed  CAS  Google Scholar 

  27. Schrödinger (2003) Jaguar 5.5. Schrödinger, Portland

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian03. Gaussian, Pittsburgh

    Google Scholar 

  29. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  30. Bauschlicher CW Jr, Ricca A, Partridge H, Langhoff SR (1997) In: Chong DP (ed) Recent advances in density functional methods, part II. World Scientific, Singapore, p 165

  31. Siegbahn PEM (1996) In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol XCIII. Wiley, London, p 333

  32. Tannor DJ, Marten B, Murphy R, Friesner RA, Sitkoff D, Nicholls A, Ringnalda M, Goddard WA III, Honig B (1994) J Am Chem Soc 116:11875

    Article  CAS  Google Scholar 

  33. Marten B, Kim K, Cortis C, Friesner RA, Murphy R, Ringnalda M, Sitkoff D, Honig B (1996) J Phys Chem 100:11775

    Article  CAS  Google Scholar 

  34. Siegbahn PEM (2001) J Comput Chem 22:1634–1645

    Article  CAS  Google Scholar 

  35. Siegbahn PEM, Blomberg MRA (2000) Chem Rev 100:421–437

    Article  PubMed  CAS  Google Scholar 

  36. Mouesca J-M, Chen JC, Noodleman L, Bashford D, Case DA (1994) J Am Chem Soc 116:11898–11914

    Article  CAS  Google Scholar 

  37. Shaik S, Filato M, Schröder D, Schwarz H (1998) Chem Eur J 4:193–199

    Article  CAS  Google Scholar 

  38. Rohde J-U, Stubna A, Bominaar EL, Münck E, Nam W, Que L Jr (2006) Inorg Chem 45:6435-6445

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Noack.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noack, H., Siegbahn, P.E.M. Theoretical investigation on the oxidative chlorination performed by a biomimetic non-heme iron catalyst. J Biol Inorg Chem 12, 1151–1162 (2007). https://doi.org/10.1007/s00775-007-0284-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0284-0

Keywords

Navigation