Skip to main content
Log in

Probing the role of copper in the biosynthesis of the molybdenum cofactor in Escherichia coli and Rhodobacter sphaeroides

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The crystal structure of Cnx1G, an enzyme involved in the biosynthesis of the molybdenum cofactor (Moco) in Arabidopsis thaliana, revealed the remarkable feature of a copper ion bound to the dithiolene unit of a molybdopterin intermediate (Kuper et al. Nature 430:803–806, 2004). To characterize further the role of copper in Moco biosynthesis, we examined the in vivo and/or in vitro activity of two Moco-dependent enzymes, dimethyl sulfoxide reductase (DMSOR) and nitrate reductase (NR), from cells grown under a variety of copper conditions. We found the activities of DMSOR and NR were not affected when copper was depleted from the media of either Escherichia coli or Rhodobacter sphaeroides. These data suggest that while copper may be utilized during Moco biosynthesis when it is available, copper does not appear to be strictly required for Moco biosynthesis in these two organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Briefly, Kuper et al. purified Cnx1E from A. thaliana with its MPT-AMP intermediate and incubated it with MgCl2 and Na2MoO4 in either the presence or the absence of CuCl2. They then used the nit-1 assay (the in vitro activity of NR from Neurospora crassa [18]) as a probe to infer the ability of copper to inhibit the insertion of molybdenum into MPT to form Moco.

  2. Optical densities were obtained at the end of the growth period (Fig. S5). The OD600 value was essentially unaltered by the presence (standard Sistrom’s medium) or absence (treated with 100 μM BCS) of copper in the growth medium.

  3. The fact that ubiquinol oxidase and cytochrome c oxidase still had measurable (albeit very low) activities despite the extraordinary lengths we went to in order to remove it highlights the difficulty of truly removing trace copper.

Abbreviations

BCS:

Bathocuproine disulfonic acid

DMS:

Dimethyl sulfide

DMSO:

Dimethyl sulfoxide

DMSOR:

Dimethyl sulfoxide reductase

GC:

Gas chromatography

ICP:

Inductively coupled plasma

LB:

Luria–Bertani

MDH:

Malate dehydrogenase

MGD:

Molybdopterin guanine dinucleotide

Moco:

Molybdenum cofactor

MPT:

Molybdopterin

MPT-AMP:

Adenylylated molybdopterin

NR:

Nitrate reductase

WT:

Wild-type

References

  1. Enemark JH, Cosper MM (2002) Met Ions Biol Syst 39:621–654

    PubMed  CAS  Google Scholar 

  2. Hille R (1996) Chem Rev 96:2757–2816

    Article  PubMed  CAS  Google Scholar 

  3. Stiefel EI (2002) Met Ions Biol Syst 39:1–29

    PubMed  CAS  Google Scholar 

  4. Burgmayer SJN (2004) Prog Inorg Chem 52:491–537

    Google Scholar 

  5. Dobbek H, Huber R (2002) Met Ions Biol Syst 39:227–263

    PubMed  CAS  Google Scholar 

  6. Schindelin H, Kisker C, Rajagopalan KV (2001) Adv Protein Chem 58:47–95

    Article  PubMed  CAS  Google Scholar 

  7. Mendel RR, Schwarz G (2002) Met Ions Biol Syst 39:317–368

    PubMed  CAS  Google Scholar 

  8. Magalon A, Frixon C, Pommier J, Giordano G, Blasco F (2002) J Biol Chem 277:48199–48204

    Article  PubMed  CAS  Google Scholar 

  9. Nichols J, Rajagopalan KV (2002) J Biol Chem 277:24995–25000

    Article  PubMed  CAS  Google Scholar 

  10. Nichols JD, Rajagopalan KV (2005) J Biol Chem 280:7817–7822

    Article  PubMed  CAS  Google Scholar 

  11. Llamas A, Mendel RR, Schwarz G (2004) J Biol Chem 279:55241–55246

    Article  PubMed  CAS  Google Scholar 

  12. Kuper J, Llamas A, Hecht H-J, Mendel RR, Schwarz G (2004) Nature 430:803–806

    Article  PubMed  CAS  Google Scholar 

  13. Llamas A, Otte T, Multhaup G, Mendel RR, Schwarz G (2006) J Biol Chem 281:18343–18350

    Article  PubMed  CAS  Google Scholar 

  14. Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O (2002) Proc Natl Acad Sci USA 99:15971–15976

    Article  PubMed  CAS  Google Scholar 

  15. George GN, Pickering IJ, Yu EY, Prince RC, Bursakov SA, Gavel OY, Moura I, Moura JJG (2000) J Am Chem Soc 122:8321–8322

    Article  CAS  Google Scholar 

  16. Hegg EL (2004) Acc Chem Res 37:775–783

    Article  PubMed  CAS  Google Scholar 

  17. Golden ML, Whaley CM, Rampersad MV, Reibenspies JH, Hancock RD, Darensbourg MY (2005) Inorg Chem 44:875–883

    Article  PubMed  CAS  Google Scholar 

  18. Nason A, Lee K-Y, Pan S-S, Ketchum PA, Lamberti A, DeVries J (1971) Proc Natl Acad Sci USA 68:3242–3246

    Article  PubMed  CAS  Google Scholar 

  19. Yamamoto K, Ishihama A (2005) Mol Microbiol 56:215–227

    Article  PubMed  CAS  Google Scholar 

  20. Morrison MS, Cricco JA, Hegg EL (2005) Biochemistry 44:12554–12563

    Article  PubMed  CAS  Google Scholar 

  21. Calhoun MW, Lemieux LJ, Thomas JW, Hill JT, Goswitz VC, Alben JO, Gennis RB (1993) Biochemistry 32:13254–13261

    Article  PubMed  CAS  Google Scholar 

  22. Sambasivarao D, Weiner JH (1991) J Bacteriol 173:5935–5943

    PubMed  CAS  Google Scholar 

  23. Palmer T, Santini C-L, Iobbi-Nivol C, Eaves DJ, Boxer DH, Giordano G (1996) Mol Microbiol 20:875–884

    Article  PubMed  CAS  Google Scholar 

  24. Chippaux M, Bonnefoy-Orth V, Ratouchniak J, Pascal M-C (1981) Mol Gen Genet 182:477–479

    Article  PubMed  CAS  Google Scholar 

  25. Rothery RA, Chatterjee I, Kiema G, McDermott MT, Weiner JH (1998) Biochem J 332:35–41

    PubMed  CAS  Google Scholar 

  26. Guigliarelli B, Magalon A, Asso M, Bertrand P, Frixon C, Giordano G, Blasco F (1996) Biochemistry 35:4828–4836

    Article  PubMed  CAS  Google Scholar 

  27. Pappas CT et al (2004) J Bacteriol 186:4748–4758

    Article  PubMed  CAS  Google Scholar 

  28. Eraso JM, Kaplan S (2000) Biochemistry 39:2052–2062

    Article  PubMed  CAS  Google Scholar 

  29. Jones RW, Garland PB (1977) Biochem J 164:199–211

    PubMed  CAS  Google Scholar 

  30. Zinder SH, Brock TD (1978) J Gen Microbiol 105:335–342

    PubMed  CAS  Google Scholar 

  31. Ragan CI, Wilson MT, Darley-Usmar VM, Lowe PN (1987) In: Darley-Usmar VM, Rickwood D, Wilson MT (eds) Mitochondria: a practical approach. IRL, Oxford, pp 79–112

  32. Watmough NJ, Katsonouri A, Little RH, Osborne JP, Furlong-Nickels E, Gennis RB, Brittain T, Greenwood C (1997) Biochemistry 36:13736–13742

    Article  PubMed  CAS  Google Scholar 

  33. Zinder SH, Brock TD (1978) Arch Microbiol 116:35–40

    Article  PubMed  CAS  Google Scholar 

  34. Huffman DL, O’Halloran TV (2001) Annu Rev Biochem 70:677–701

    Article  PubMed  CAS  Google Scholar 

  35. Nittis T, McCall K, Winge DR (2001) Mitochondrial copper ion transport. In: Winkelmann G (ed) Microbial transport systems. Wiley-VCH Verlag, New York, pp 419–445

    Chapter  Google Scholar 

  36. Carr HS, Winge DR (2003) Acc Chem Res 36:309–316

    Article  PubMed  CAS  Google Scholar 

  37. Mendel RR (2005) Dalton Trans 3404–3409

  38. Pau RN, Lawson DM (2002) Met Ions Biol Syst 39:31–74

    PubMed  CAS  Google Scholar 

  39. Rutherford JC, Bird AJ (2004) Eukaryot Cell 3:1–13

    Article  PubMed  CAS  Google Scholar 

  40. Van Ho A, Ward DM, Kaplan J (2002) Annu Rev Microbiol 56:237–261

    Article  PubMed  CAS  Google Scholar 

  41. Schwarz G et al (2004) Hum Mol Genet 13:1249–1255

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Robert Gennis (University of Illinois), Joel Weiner (University of Alberta), Samuel Kaplan, (University of Texas Medical School), and Jonathan Hosler (University of Mississippi Medical Center) for the bacterial strains and plasmids listed in the “Materials and methods.” We also thank Dennis Winge (University of Utah) and Matthew Sigman (University of Utah) for use of the ICP spectrophotometer and gas chromatograph system, respectively. Finally, we thank Ralf Mendel (Technical University of Braunschweig) for many helpful discussions and comments. Financial support was provided by the National Institutes of Health (grant GM66236) and by the Research Corporation (grant CS0890). E.L.H. is a Cotrell Scholar of Research Corporation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric L. Hegg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2007_279_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrison, M.S., Cobine, P.A. & Hegg, E.L. Probing the role of copper in the biosynthesis of the molybdenum cofactor in Escherichia coli and Rhodobacter sphaeroides . J Biol Inorg Chem 12, 1129–1139 (2007). https://doi.org/10.1007/s00775-007-0279-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0279-x

Keywords

Navigation