Skip to main content
Log in

Kinetic and crystallographic studies of a redesigned manganese-binding site in cytochrome c peroxidase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Manganese peroxidase (MnP) from the white rot fungus Phanerochaete chrysosporium contains a manganese-binding site that plays a critical role in its function. Previously, a MnII-binding site was designed into cytochrome c peroxidase (CcP) based on sequence homology (Yeung et al. in Chem. Biol. 4:215–222, 1997; Gengenbach et al. in Biochemistry 38:11425–11432, 1999). Here, we report a redesign of this site based on X-ray structural comparison of MnP and CcP. The variant, CcP(D37E, V45E, H181E), displays 2.5-fold higher catalytic efficiency (k cat/K M) than the variant in the original design, mostly due to a stronger K M of 1.9 mM (vs. 4.1 mM). High-resolution X-ray crystal structures of a metal-free form and a form with CoII at the designed MnII site were also obtained. The metal ion in the engineered metal-binding site overlays well with MnII bound in MnP, suggesting that this variant is the closest structural model of the MnII-binding site in MnP for which a crystal structure exists. A major difference arises in the distances of the ligands to the metal; the metal–ligand interactions in the CcP variant are much weaker than the corresponding interactions in MnP, probably owing to partial occupancy of metal ion at the designed site, difference in the identity of metal ions (CoII rather than MnII) and other interactions in the second coordination sphere. These results indicate that the metal ion, the ligands, and the environment around the metal-binding site play important roles in tuning the structure and function of metalloenzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CcP:

Cytochrome c peroxidase from Saccharomyces cerevisiae

CcP(MI):

Recombinant yeast CcP containing Met-Ile at the N-terminus in addition to the normal wild-type yeast CcP sequence

EPR:

Electron paramagnetic resonance

Compound I:

Ferryl (FeIV-oxo) heme and porphyrin cation radical

Compound I•:

Ferryl (FeIV-oxo) heme and Trp radical

Compound II:

Ferryl (FeIV-oxo) heme

MnCcP:

CcP(G41E, V45E, H181D)

MnCcP2:

CcP(G41E, V45E, W51F, H181D, W191F)

MnCcP.1:

CcP(D37E, V45E, H181E)

MnP:

Manganese peroxidase

MP6.8:

CcP(D37E, P44D, V45D)

PC:

Phanerochaete chrysosporium

WTCcP:

Wild-type yeast CcP

References

  1. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley

    Google Scholar 

  2. Bertini I, Gray HB, Lippard SJ, Valentine JS (1994) Bioinorganic chemistry. University Science Books, Sausalito

    Google Scholar 

  3. Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239–2314

    Article  PubMed  CAS  Google Scholar 

  4. Thomson AJ, Gray HB (1998) Curr Opin Chem Biol 2:155–158

    Article  PubMed  CAS  Google Scholar 

  5. DeGrado WF, Summa CM, Pavone V, Nastri F, Lombardi A (1999) Annu Rev Biochem 68:779–819

    Article  PubMed  CAS  Google Scholar 

  6. Lu Y, Berry SM, Pfister TD (2001) Chem Rev 101:3047–3080

    Article  PubMed  CAS  Google Scholar 

  7. Watanabe Y (2002) Curr Opin Chem Biol 6:208–216

    Article  PubMed  CAS  Google Scholar 

  8. Reedy CJ, Gibney BR (2004) Chem Rev 104:617–649

    Article  PubMed  CAS  Google Scholar 

  9. Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1994) J Biol Chem 269:32759–32767

    PubMed  CAS  Google Scholar 

  10. Sundaramoorthy M, Youngs HL, Gold MH, Poulos TL (2005) Biochemistry 44:6463–6470

    Article  PubMed  CAS  Google Scholar 

  11. Gold MH, Wariishi H, Valli K (1989) ACS Symp Ser 389:127–140

    Article  CAS  Google Scholar 

  12. Tien M, Cai D (1990) Biol Oxid Syst Proc Symp 1:433–451

    CAS  Google Scholar 

  13. Gold MH, Youngs HL, Gelpke MD S (2000) Met Ions Biol Syst 37:559–586

    Google Scholar 

  14. Dunford HB (1999) Heme peroxidases. Wiley-VCH, New York

    Google Scholar 

  15. Kishi K, Kusters-van Someren M, Mayfield MB, Sun J, Loehr TM, Gold MH (1996) Biochemistry 35:8986–8994

    Article  PubMed  CAS  Google Scholar 

  16. Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1997) J Biol Chem 272:17574–17580

    Article  PubMed  CAS  Google Scholar 

  17. Kusters-van Someren M., Kishi K, Lundell T, Gold MH (1995) Biochemistry 34:10620–10627

    Article  PubMed  CAS  Google Scholar 

  18. Gelpke MD, Youngs HL, Gold MH (2000) Eur J Biochem 267:7038–7045

    Article  PubMed  CAS  Google Scholar 

  19. Youngs HL, Sollewijn Gelpke MD, Li D, Sundaramoorthy M, Gold MH (2001) Biochemistry 40:2243–2250

    Article  PubMed  CAS  Google Scholar 

  20. Yeung BK, Wang X, Sigman JA, Petillo PA, Lu Y (1997) Chem Biol 4:215–221

    Article  PubMed  CAS  Google Scholar 

  21. Wilcox SK, Putnam CD, Sastry M, Blankenship J, Chazin WJ, McRee DE, Goodin DB (1998) Biochemistry 37:16853–16862

    Article  PubMed  CAS  Google Scholar 

  22. Wang X, Lu Y (1999) Biochemistry 38:9146–9157

    Article  PubMed  CAS  Google Scholar 

  23. Gengenbach A, Syn S, Wang X, Lu Y (1999) Biochemistry 38:11425–11432

    Article  PubMed  CAS  Google Scholar 

  24. Gengenbach A, Wang X, Lu Y (2001) In: Argyropoulos DS (ed) Oxidative delignification chemistry, fundamentals and catalysis, ACS symp. ser. vol 785. American Chemical Society, Washington, pp 487–500

  25. Mester T, Tien M (2001) Biochem Biophys Res Commun 284:723–728

    Article  PubMed  CAS  Google Scholar 

  26. Hunter CL, Maurus R, Mauk MR, Lee H, Raven EL, Tong H, Nguyen N, Smith M, Brayer GD, Mauk AG (2003) Proc Natl Acad Sci USA 100:3647–3652

    Article  PubMed  CAS  Google Scholar 

  27. Poulos TL, Fenna RE (1994) In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 30. Dekker, New York, pp 25–75

  28. English AM, Tsaprailis G (1995) Adv Inorg Chem 43:79–125

    CAS  Google Scholar 

  29. Erman JE, Vitello LB (1998) J Biochem Mol Biol 31:307–327

    CAS  Google Scholar 

  30. Poulos TL, Kraut J (1980) J Biol Chem 255:8199–8205

    PubMed  CAS  Google Scholar 

  31. Goodin DB, Mauk AG, Smith M (1986) Proc Natl Acad Sci USA 83:1295–1299

    Article  PubMed  CAS  Google Scholar 

  32. Sivaraja M, Goodin DB, Smith M, Hoffman BM (1989) Science 245:738–740

    Article  PubMed  CAS  Google Scholar 

  33. Ivancich A, Dorlet P, Goodin DB, Un S (2001) J Am Chem Soc 123:5050–5058

    Article  PubMed  CAS  Google Scholar 

  34. Nelson DP, Kiesow LA (1972) Anal Biochem 49:474–478

    Article  PubMed  CAS  Google Scholar 

  35. Pfister TD, Gengenbach AJ, Syn S, Lu Y (2001) Biochemistry 40:14942–14951

    Article  PubMed  CAS  Google Scholar 

  36. De Duve C (1948) Acta Chem Scand 2:264–289

    Article  Google Scholar 

  37. Morrison M, Horie S (1965) Anal Biochem 12:77–82

    Article  PubMed  CAS  Google Scholar 

  38. Wariishi H, Valli K, Gold MH (1992) J Biol Chem 267:23688–23695

    PubMed  CAS  Google Scholar 

  39. Kuan IC, Tien M (1993) Proc Natl Acad Sci USA 90:1242–1246

    Article  PubMed  CAS  Google Scholar 

  40. Khindaria A, Barr D, Aust SD (1995) Biochemistry 34:7773–7779

    Article  PubMed  CAS  Google Scholar 

  41. Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326

    CAS  Google Scholar 

  42. Navaza J (1994) Acta Crystallogr Sect A 50:157–163

    Article  Google Scholar 

  43. Sheldrick GM, Schneider TR (1997) Methods Enzymol 277:319–343

    CAS  PubMed  Google Scholar 

  44. Jones TA, Zou JY, Cowan SW, Kjeldgaard M (1991) Acta Crystallogr Sect A 47:110–119

    Article  Google Scholar 

  45. Brunger AT (1992) XPLOR. Yale University, New Haven

  46. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  47. Finzel BC, Poulos TL, Kraut J (1984) J Biol Chem 259:13027–13036

    PubMed  CAS  Google Scholar 

  48. Fishel LA, Farnum MF, Mauro JM, Miller MA, Kraut J, Liu Y, Tan XL, Scholes CP (1991) Biochemistry 30:1986–1996

    Article  PubMed  CAS  Google Scholar 

  49. Harris RZ, Wariishi H, Gold MH, Ortiz de Montellano PR (1991) J Biol Chem 266:8751–8758

    PubMed  CAS  Google Scholar 

  50. Youngs HL, Sundaramoorthy M, Gold MH (2000) Eur J Biochem 267:1761–1769

    Article  PubMed  CAS  Google Scholar 

  51. Loo S, Erman JE (1975) Biochemistry 14:3467–3470

    Article  PubMed  CAS  Google Scholar 

  52. Vitello LB, Huang M, Erman JE (1990) Biochemistry 29:4283–4288

    Article  PubMed  CAS  Google Scholar 

  53. Erman JE, Vitello LB, Miller MA, Shaw A, Brown KA, Kraut J (1993) Biochemistry 32:9798–9806

    Article  PubMed  CAS  Google Scholar 

  54. Glenn JK, Gold MH (1985) Arch Biochem Biophys 242:329–341

    Article  PubMed  CAS  Google Scholar 

  55. Barrows TP, Bhaskar B, Poulos TL (2004) Biochemistry 43:8826–8834

    Article  PubMed  CAS  Google Scholar 

  56. Shannon RD (1976) Acta Crystallogr Sect A 32:751–767

    Article  Google Scholar 

  57. See RF, Kruse RA, Strub WM (1998) Inorg Chem 37:5369–5375

    Article  CAS  Google Scholar 

  58. Eshaghi S, Niegowski D, Kohl A, Molina DM, Lesley SA, Nordlund P (2006) Science 313:354–357

    Article  PubMed  CAS  Google Scholar 

  59. Gelpke MDS, Moeenne-Loccoz P, Gold MH (1999) Biochemistry 38:11482–11489

    Article  CAS  Google Scholar 

  60. Camarero S, Sarkar S, Ruiz-Duenas FJ, Martinez MJ, Martinez AT (1999) J Biol Chem 274:10324–10330

    Article  PubMed  CAS  Google Scholar 

  61. Mayfield MB, Kishi K, Alic M, Gold MH (1994) Appl Environ Microbiol 60:4303–4309

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Institute of General Medical Sciences in the National Institute of Health (GM62211 to Y.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfister, T.D., Mirarefi, A.Y., Gengenbach, A.J. et al. Kinetic and crystallographic studies of a redesigned manganese-binding site in cytochrome c peroxidase. J Biol Inorg Chem 12, 126–137 (2007). https://doi.org/10.1007/s00775-006-0171-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0171-0

Keywords

Navigation