Skip to main content
Log in

Heme-peptide/protein ions and phosphorous ligands: search for site-specific addition reactions

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

High-resolution Fourier transform ion cyclotron resonance mass spectrometry is employed to gain thorough kinetics and thermodynamics information on the reaction of free and ligated heme-type ions with selected ligands, with the aim of obtaining an insight into the coordination environment of the prosthetic group in a variety of biomolecular ions. Adopting a stepwise approach towards systems of increasing complexity, we examined the reactivity of free gaseous iron(III) protoporphyrin IX ions, Fe(III)-heme+, of the charged species from microperoxidase-11 (MP11) (covalently peptide bound heme), and of the multiply charged ions from heme proteins, namely, cytochrome c (cyt c) and myoglobin (examples of noncovalently protein bound hemes). Among an array of test compounds allowed to react with Fe(III)-heme+, OP(OMe)3 and P(OMe)3 proved to be similarly efficient ligands in the first addition step, yet displayed markedly distinct reactivity towards heme iron already engaged in axial coordination. The ease with which P(OMe)3 acts as a second axial ligand is exploited to probe structural and conformational features of biomolecular ions. In this way, circumstantial evidence is gained of a folded conformation of +2 charge state ions from MP11 and an elongated one for the +3 charge state ions. Similarly, both the general reaction pattern and detailed kinetics and thermodynamics data point to a regiospecific addition reaction of P(OMe)3 directed at the heme iron within multiply charged ions from cyt c. This unprecedented example of ion–molecule reaction which specifically involves a prosthetic group belonging to protein ions stands in contrast to the multiple, nonspecific interactions established by OP(OMe)3 molecules with the protonated sites of multiply charged cyt c and apomyoglobin ions. This finding may develop and provide sensitive probes of the structure and bonding features of protein ions in the gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The association of a neutral ligand (L) to Fe(III)-heme+ ions (Eq. 1) at the low operating pressures of the FT-ICR cell is possible in a regime of thermal equilibration of the adduct ion [Fe(III)-heme(L)+] whose excess energy gained in the formation process may be released by IR radiative emission [44, 50]. The rate of radiative emission is expected to increase with increasing size of the ion, and species as large as protein ions are found to undergo a rapid IR cooling [51].

Abbreviations

CSD:

Charge state distribution

Cyt c :

Cytochrome c

ESI:

Electrospray ionization

Fe(III)-heme+ :

Iron(III) protoporphyrin IX ion

FT-ICR:

Fourier transform ion cyclotron resonance

GB:

Gas-phase basicity

HCB:

Heme cation basicity

MP11:

Microperoxidase-11

MS:

Mass spectrometry

References

  1. Dobson CM (2003) Nature 426:884–890

    Article  PubMed  CAS  Google Scholar 

  2. Eaton WA, Munoz V, Thompson PA, Henry ER, Hofrichter J (1998) Acc Chem Res 31:745–754

    Article  CAS  Google Scholar 

  3. Rumbley J, Hoang L, Mayne L, Englander SW (2001) Proc Natl Acad Sci USA 98:105–112

    Article  PubMed  CAS  Google Scholar 

  4. Royer CA (2006) Chem Rev 106:1769–1784

    Article  PubMed  CAS  Google Scholar 

  5. Bertini I, Calderone V, Cosenza M, Fragai M, Lee YM, Luchinat C, Mangani S, Terni B, Turano P (2005) Proc Natl Acad Sci USA 102:5334–5339

    Article  PubMed  CAS  Google Scholar 

  6. Katta V, Chait BT (1991) J Am Chem Soc 113:8534–8535

    Article  CAS  Google Scholar 

  7. Wood TD, Chorush RA, Wampler FM III, Little DP, O’Connor PB, McLafferty FW (1995) Proc Natl Acad Sci USA 92:2451–2454

    Article  PubMed  CAS  Google Scholar 

  8. Gross DS, Schnier PD, Rodriguez-Cruz SE, Fagerquist CK, Williams ER (1996) Proc Natl Acad Sci USA 93:3143–3148

    Article  PubMed  CAS  Google Scholar 

  9. Ogorzalek Loo RR, Smith RD (1995) J Mass Spectrom 30:339–347

    Article  CAS  Google Scholar 

  10. Jarrold MF (1999) Acc Chem Res 32:360–367

    Article  CAS  Google Scholar 

  11. Konermann L, Simmons DA (2003) Mass Spectrom Rev 22:1–26

    Article  PubMed  CAS  Google Scholar 

  12. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Science 246:64–71

    Article  PubMed  CAS  Google Scholar 

  13. Cole RB (ed) (1997) Electrospray ionization mass spectrometry, fundamentals, instrumentation and applications. Wiley-Interscience, New York

  14. Kebarle PJ (2000) J Mass Spectrom 35:804–817

    Article  PubMed  CAS  Google Scholar 

  15. Konermann L, Douglas DJ (1997) Biochemistry 36:12296–12302

    Article  PubMed  CAS  Google Scholar 

  16. Konermann L, Douglas DJ (1998) J Am Soc Mass Spectrom 9:1248–1254

    Article  PubMed  CAS  Google Scholar 

  17. Grandori R (2003) Curr Org Chem 7:1589–1603

    Article  CAS  Google Scholar 

  18. Kaltashov IA, Eyles SJ (2002) Mass Spectrom Rev 21:37–71

    Article  PubMed  CAS  Google Scholar 

  19. Loo JA (2000) Int J Mass Spectrom 200:175–186

    Article  CAS  Google Scholar 

  20. Przybylski M, Glocker MO (1996) Angew Chem Int Ed Engl 35:806–826

    Article  CAS  Google Scholar 

  21. Schnier PD, Gross DS, Williams ER (1995) J Am Chem Soc 117:6747–6757

    Article  CAS  Google Scholar 

  22. Shelimov KB, Clemmer DE, Hudgins RR, Jarrold MF (1997) J Am Chem Soc 119:2240–2248

    Article  CAS  Google Scholar 

  23. Gronert S (1999) Int J Mass Spectrom 185–187:351–357

    Google Scholar 

  24. Peschke M, Blades A, Kebarle P (2002) J Am Chem Soc 124:11519–11530

    Article  PubMed  CAS  Google Scholar 

  25. Suckau D, Shi Y, Beu SC, Senko MW, Quinn JP, Wampler FM III, McLafferty FW (1993) Proc Natl Acad Sci USA 90:790–793

    Article  PubMed  CAS  Google Scholar 

  26. McLafferty FW, Guan Z, Haupts UH, Wood TD, Kelleher N (1998) J Am Chem Soc 120:4732–4740

    Article  CAS  Google Scholar 

  27. Cassady CJ, Carr SR (1996) J Mass Spectrom 31:247–254

    Article  PubMed  CAS  Google Scholar 

  28. Camara E, Green MK, Penn SG, Lebrilla CB (1996) J Am Chem Soc 118:8751–8752

    Article  CAS  Google Scholar 

  29. Fye JL, Woenckhaus J, Jarrold MF (1998) J Am Chem Soc 120:1327–1328

    Article  CAS  Google Scholar 

  30. Marshall AG, Hendrickson CL, Jackson GS (1998) Mass Spectrom Rev 17:1–35

    Article  PubMed  CAS  Google Scholar 

  31. Laude DA, Stevenson E, Robinson JM (1997) In: Cole RB (ed) Electrospray ionization mass spectrometry. Wiley, New York, pp 291–319

  32. Bogdanov B, Smith RD (2005) Mass Spectrom Rev 24:168–200

    Article  PubMed  CAS  Google Scholar 

  33. Scott RA, Mauk AG (eds) (1996) Cytochrome c: a multidisciplinary approach. University Science Books, Sausalito

  34. Jiang X, Wang X (2004) Annu Rev Biochem 73:87–106

    Article  PubMed  CAS  Google Scholar 

  35. Pettigrew GW, Moore GR (eds) (1987) Cytochromes c; biological aspects. Springer, Berlin Heidelberg New York

  36. Winkler JR (2004) Curr Opin Chem Biol 8:169–174

    Article  PubMed  CAS  Google Scholar 

  37. Bertini I, Cavallaro G, Rosato A (2006) Chem. Rev 106:90–115

    Article  PubMed  CAS  Google Scholar 

  38. Pletneva EV, Gray HB, Winkler JR (2005) Proc Natl Acad Sci USA 102:18397–18402

    Article  PubMed  CAS  Google Scholar 

  39. Bren KL, Kellogg JA, Kaur R, Wen X (2004) Inorg Chem 43:7934–7944

    Article  PubMed  CAS  Google Scholar 

  40. McLuckey SA, Van Berkel GJ, Glish GL (1990) J Am Chem Soc 112:5668–5670

    Article  CAS  Google Scholar 

  41. Gong S, Camara E, He F, Green MK, Lebrilla CB (1999) Int J Mass Spectrom 185–187:401–412

    Google Scholar 

  42. Stephenson JL Jr, Schaaff TG, McLuckey SA (1999) J Am Soc Mass Spectrom 10:552–556

    Article  PubMed  CAS  Google Scholar 

  43. Woenckhaus J, Hudgins RR, Jarrold MF (1997) J Am Chem Soc 119:9586–9587

    Article  CAS  Google Scholar 

  44. Angelelli F, Chiavarino B, Crestoni ME, Fornarini S (2005) J Am Soc Mass Spectrom 16:589–598

    Article  PubMed  CAS  Google Scholar 

  45. Meot-Ner M (1979) In: Bowers MT (ed) Gas-phase ion chemistry, vol 1. Academic, New York

  46. Bartmess JE, Georgiadis RM (1983) Vacuum 33:149–153

    Article  CAS  Google Scholar 

  47. Su T, Chesnavich WJ (1982) J Chem Phys 76:5183–5185

    Article  CAS  Google Scholar 

  48. Schroder D, Schwarz H, Clemmer DE, Chen Y, Armentrout PB, Baranov VI, Bohme DK (1997) Int J Mass Spectrom Ion Process 161:175–191

    Article  Google Scholar 

  49. Nicoll JB, Dearden DV (1997) KinFit, v.1.0. Department of Chemistry and Biochemistry, Brigham Young University, Provo

  50. Horn DM, Breuker K, Frank AJ, McLafferty FW (2001) J Am Chem Soc 123:9792–9799

    Article  PubMed  CAS  Google Scholar 

  51. Hunter EP, Lias SG (2005) In: Linstrom PJ, Mallard WG (eds) NIST chemistry webbook, NIST standard reference database number 69. http://webbook.nist.gov

  52. Ryzhov V, Dunbar RC (1999) J Am Soc Mass Spectrom 10:862–868

    Article  CAS  Google Scholar 

  53. Loew GH, Harris DL (2000) Chem Rev 100:407–419

    Article  PubMed  CAS  Google Scholar 

  54. Reedy CJ, Gibney BR (2004) Chem Rev 104:617–649

    Article  PubMed  CAS  Google Scholar 

  55. Rovira C, Karel Kunc K, Hutter J, Ballone P, Parrinello M (1997) J Phys Chem A 101:8914–8925

    Article  CAS  Google Scholar 

  56. Lombardi A, Nastri F, Pavone V (2001) Chem Rev 101:3165–3189

    Article  PubMed  CAS  Google Scholar 

  57. Dallacosta C, Casella L, Monzani E (2003) J Biol Inorg Chem 8:770–776

    Article  PubMed  CAS  Google Scholar 

  58. Baldwin DA, Marques HM, Pratt JM (1987) J Inorg Biochem 30:203–217

    Article  PubMed  CAS  Google Scholar 

  59. Raffa D, Leung KT, Battaglini F (2003) Anal Chem 75:4983–4987

    Article  CAS  Google Scholar 

  60. Melchionna S, Barteri M, Ciccotti G (1995) J Comput Aided Mater Des 2:9–22

    Article  CAS  Google Scholar 

  61. Melchionna S, Barteri M, Ciccotti G (1996) J Phys Chem 100:19241–19250

    Article  CAS  Google Scholar 

  62. Marques HM, Brown KL (2002) Coord Chem Rev 225:123–158

    Article  CAS  Google Scholar 

  63. Di Teodoro C, Aschi M, Amadei A, Roccatano D, Malatesta F, Ottaviano L (2005) Chem Phys Chem 6:681–668

    PubMed  CAS  Google Scholar 

  64. Meot-Ner M (2005) Chem Rev 105:213–284

    Article  PubMed  CAS  Google Scholar 

  65. Chowdhury SK, Katta V, Chait BT (1990) J Am Chem Soc 112:9012–9013

    Article  CAS  Google Scholar 

  66. Hunter CL, Mauk AG, Douglas DJ (1997) Biochemistry 36:1018–1025

    Article  PubMed  CAS  Google Scholar 

  67. Konishi’ Y, Fengt R (1994) Biochemistry 33:9706–9710

    Article  CAS  Google Scholar 

  68. Upmacis RK, Hajjar DP, Chait BT, Mirza UA (1997) J Am Chem Soc 119:10424–10429

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the Italian Ministero dell’Istruzione, dell’Università e della Ricerca Scientifica for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Elisa Crestoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crestoni, M.E., Fornarini, S. Heme-peptide/protein ions and phosphorous ligands: search for site-specific addition reactions. J Biol Inorg Chem 12, 22–35 (2007). https://doi.org/10.1007/s00775-006-0159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0159-9

Keywords

Navigation