Skip to main content
Log in

Structure of a [2Fe–2S] ferredoxin from Rhodobacter capsulatus likely involved in Fe–S cluster biogenesis and conformational changes observed upon reduction

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

FdVI from Rhodobacter capsulatus is structurally related to a group of [2Fe–2S] ferredoxins involved in iron–sulfur cluster biosynthesis. Comparative genomics suggested that FdVI and orthologs found in α-Proteobacteria are involved in this process. Here, the crystal structure of FdVI has been determined for both the oxidized and the reduced protein. The [2Fe–2S] cluster lies 6 Å below the protein surface in a hydrophobic pocket without access to the solvent. This particular cluster environment might explain why the FdVI midpoint redox potential (−306 mV at pH 8.0) did not show temperature or ionic strength dependence. Besides the four cysteines that bind the cluster, FdVI features an extra cysteine which is located close to the S1 atom of the cluster and is oriented in a position such that its thiol group points towards the solvent. Upon reduction, the general fold of the polypeptide chain was almost unchanged. The [2Fe–2S] cluster underwent a conformational change from a planar to a distorted lozenge. In the vicinity of the cluster, the side chain of Met24 was rotated by 180°, bringing its S atom within hydrogen-bonding distance of the S2 atom of the cluster. The reduced molecule also featured a higher content of bound water molecules, and more extensive hydrogen-bonding networks compared with the oxidized molecule. The unique conformational changes observed in FdVI upon reduction are discussed in the light of structural studies performed on related ferredoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Adx:

Adrenodoxin

AnFd:

Anabaena PCC7119 ferredoxin

EPR:

Electron paramagnetic resonance

Fd:

Ferredoxin

Fdx:

Ferredoxin from Escherichia coli

MAD:

Multiple anomalous dispersion

Pdx:

Putidaredoxin

rms:

Root mean square

References

  1. Bruschi M, Guerlesquin F (1988) FEMS Microbiol Rev 54:155–176

    Article  CAS  Google Scholar 

  2. Muller JJ, Muller A, Rottmann M, Bernhardt R, Heinemann U (1999) J Mol Biol 294:501–513

    Article  PubMed  CAS  Google Scholar 

  3. Bernhardt R (1996) Rev Physiol Biochem Pharmacol 127:137–221

    Article  PubMed  CAS  Google Scholar 

  4. Baldwin JE, Morris GM, Richards WG (1991) Proc R Soc Lond B Biol Sci 245:43–51

    Article  CAS  Google Scholar 

  5. Berg A, Gustafsson JA, Ingelman-Sundberg M (1976) J Biol Chem 251:2831–2838

    PubMed  CAS  Google Scholar 

  6. Zheng L, Cash VL, Flint DH, Dean DR (1998) J Biol Chem 273:13264–13272

    Article  PubMed  CAS  Google Scholar 

  7. Takahashi Y, Nakamura M (1999) J. Biochem (Tokyo) 126:917–926

    CAS  Google Scholar 

  8. Lange H, Kaut A, Kispal G, Lill R (2000) Proc Natl Acad Sci USA 97:1050–1055

    Article  PubMed  CAS  Google Scholar 

  9. Grinberg AV, Hannemann F, Schiffler B, Muller J, Heinemann U, Bernhardt R (2000) Proteins Struct Funct Genet 40:590–612

    Article  PubMed  CAS  Google Scholar 

  10. Muller A, Muller JJ, Muller YA, Uhlmann H, Bernhardt R, Heinemann U (1998) Structure 6:269–280

    Article  PubMed  CAS  Google Scholar 

  11. Kakuta Y, Horio T, Takahashi Y, Fukuyama K (2001) Biochemistry 40:11007–11012

    Article  PubMed  CAS  Google Scholar 

  12. Sevrioukova IF, Garcia C, Li HY, Bhaskar B, Poulos TL (2003) J Mol Biol 333:377–392

    Article  PubMed  CAS  Google Scholar 

  13. Armengaud J, Meyer C, Jouanneau Y (1994) Biochem J 300:413–418

    PubMed  CAS  Google Scholar 

  14. Grabau C, Schatt E, Jouanneau Y, Vignais PM (1991) J Biol Chem 266:3294–3299

    PubMed  CAS  Google Scholar 

  15. Naud I, Vinçon M, Garin J, Gaillard J, Forest E, Jouanneau Y (1994) Eur J Biochem 222:933–939

    Article  PubMed  CAS  Google Scholar 

  16. Armengaud J, Meyer C, Jouanneau Y (1997) J Bacteriol 179:3304–3309

    PubMed  CAS  Google Scholar 

  17. Armengaud J, Sainz G, Jouanneau Y, Sieker LC (2001) Acta Crystallogr D 57:301–303

    Article  PubMed  CAS  Google Scholar 

  18. Bourgeois D, Vernede X, Adam V, Fioravanti E, Ursby T (2002) J Appl Crystallogr 35:319–326

    Article  CAS  Google Scholar 

  19. Bertrand P, Gayda JP (1979) Biochim Biophys Acta 579:107–121

    PubMed  CAS  Google Scholar 

  20. Tanigushi VT, Sailasuta-Scott N, Anson FC, Gray HB (1980) Pure Appl Chem 52:2275–2281

    Article  Google Scholar 

  21. Evans G, Pettifer RF (2001) J Appl Crystallogr 34:82–86

    Article  CAS  Google Scholar 

  22. Westbrook EM, Naday I (1997) Methods Enzymol 276:244–268

    PubMed  CAS  Google Scholar 

  23. Otwinowski Z (1993) In: Bailey S (ed) Data collection and processing, Proceedings of the CCP4. SERC Laboratory, Daresbury, pp 56–62

  24. Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326

    CAS  Google Scholar 

  25. Brünger AT et al (1998) Acta Crystallogr D 54:905–921

    Article  PubMed  Google Scholar 

  26. Perrakis A, Morris R, Lamzin VS (1999) Nat Struct Biol 6:458–463

    Article  PubMed  CAS  Google Scholar 

  27. Jones TA, Zou J-Y, Cowan SW, Kjeldgaard M (1991) Acta Crystallogr A 47:110–119

    Article  PubMed  Google Scholar 

  28. Navaza J (1994) Acta Crystallogr A 50:157–163

    Article  Google Scholar 

  29. CCP4 (1994) Acta Crystallogr D 50:760–763

    Article  Google Scholar 

  30. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) Nucleic Acids Res 31:258–261

    Article  PubMed  CAS  Google Scholar 

  31. Ta DT, Vickery LE (1992) J Biol Chem 267:11120–11125

    PubMed  CAS  Google Scholar 

  32. Jung YS, Gao-Sheridan HS, Christiansen J, Dean DR, Burgess BK (1999) J Biol Chem 274:32402–32410

    Article  PubMed  CAS  Google Scholar 

  33. Hase T, Mizutani S, Mukohata Y (1991) Plant Physiol 97:1395–1401

    PubMed  CAS  Google Scholar 

  34. Battistuzzi G, D’Onofrio M, Borsari M, Sola M, Macedo AL, Moura JJ, Rodrigues P (2000) J Biol Inorg Chem 5:748–760

    Article  PubMed  CAS  Google Scholar 

  35. Huang YY, Kimura T (1983) Anal Biochem 133:385–393

    Article  PubMed  CAS  Google Scholar 

  36. Burova TV, Beckert V, Uhlmann H, Ristau O, Bernhardt R, Pfeil W (1996) Protein Sci 5:1890–1897

    PubMed  CAS  Google Scholar 

  37. Coghlan VM, Vickery LE (1991) J Biol Chem 266:18606–18612

    PubMed  CAS  Google Scholar 

  38. Holden M, Mayhew M, Bunk D, Roitberg A, Vilker V (1997) J Biol Chem 272:21720–21725

    Article  PubMed  CAS  Google Scholar 

  39. Sevrioukova IF, Hazzard JT, Tollin G, Poulos TL (2001) Biochemistry 40:10592–10600

    Article  PubMed  CAS  Google Scholar 

  40. Morales R, Charon MH, Hudry-Clergeon G, Petillot Y, Norager S, Medina M, Frey M (1999) Biochemistry 38:15764–15773

    Article  PubMed  CAS  Google Scholar 

  41. Sevrioukova IF (2005) J Mol Biol 347:607–621

    Article  PubMed  CAS  Google Scholar 

  42. Morales R, Charon MH, Kachalova G, Serre L, Medina M, Gomez-Moreno C, Frey M (2000) EMBO Rep 1:271–276

    Article  PubMed  CAS  Google Scholar 

  43. Beilke D, Weiss R, Lohr F, Pristovsek P, Hannemann F, Bernhardt R, Ruterjans H (2002) Biochemistry 41:7969–7978

    Article  PubMed  CAS  Google Scholar 

  44. Kostic M, Bernhardt R, Pochapsky TC (2003) Biochemistry 42:8171–8182

    Article  PubMed  CAS  Google Scholar 

  45. Esnouf RM (1997) J Mol Graph 15:133–138

    Google Scholar 

  46. Merritt EA, Murphy ME (1994) Acta Crystallogr D 50:869–873

    Article  PubMed  CAS  Google Scholar 

  47. Nicholls A, Sharp KA, Honig B (1991) Proteins Struct Funct Genet 11:281–296

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Christine Meyer for helping in the purification of FdVI. We are indebted to Emile Duée and Eric Fanchon for helpful discussion. Thanks to D. Bourgeois, X. Vernede, R. Morales and J. Fontecilla for helpful advice and for giving us access to the facilities which allowed us to obtain and analyze reduced crystals of FdVI. We wish to thank Valerie Biou, Janet Smith and Andrew Thompson for valuable suggestions and support. Funding for this project was provided by the Centre National de la Recherche Scientifique, the Commissariat à l’Energie Atomique, the European Synchrotron Radiation Facility and the NIGMS under agreement Y1 GM-0080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Jouanneau.

Additional information

Germaine Sainz and Jean Jakoncic contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sainz, G., Jakoncic, J., Sieker, L.C. et al. Structure of a [2Fe–2S] ferredoxin from Rhodobacter capsulatus likely involved in Fe–S cluster biogenesis and conformational changes observed upon reduction. J Biol Inorg Chem 11, 235–246 (2006). https://doi.org/10.1007/s00775-005-0069-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0069-2

Keywords

Navigation