Skip to main content
Log in

Reduction thermodynamics of the T1 Cu site in plant and fungal laccases

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The thermodynamic parameters for reduction of the type-1 (T1) copper site in Rhus vernicifera and Trametes versicolor laccases and for the derivative of the former protein from which the type-2 copper has been selectively removed (T2D) have been determined with UV–vis spectroelectrochemistry. In all cases, the enthalpic term turns out to be the main determinant of the E o′ of the T1 site. Also the difference between the reduction potentials of the two laccases is enthalpy-based and reflects differences in the coordination features of the T1 sites and their protein environment. The T1 sites in native R. vernicifera laccase and its T2D derivative show the same E o′, as a result of compensatory differences in the reduction thermodynamics. This suggests that removal of the type-2 (T2) copper results in modification of the reduction-induced solvent reorganization effects, with no influence in the structure of the multicopper protein site. This conclusion is supported by NMR data recorded on the native, the T2D, and Hg-substituted T1 derivatives of R. vernicifera laccase, which show that the T1 and T2/T3 sites are largely noninteracting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EPR:

Electron paramagnetc resonance

OTTLE:

Optically transparent thin layer electrochemical

T1:

Type 1

T1(Hg):

Laccase derivative in which the type-1 copper has been replaced with Hg

T2:

Type 2

T2D:

Type-2 copper depleted form of laccase

T3:

Type 3

ΔH orc ′:

Enthalpy change for reduction

ΔS orc ′:

Entropy change for reduction

E o′:

Standard reduction potential

References

  1. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2605

    Article  PubMed  CAS  Google Scholar 

  2. Davies GJ, Ducros V (2001) In: Messerchmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins, vol 1. Wiley Interscience, Chicester, pp 1359–1368

  3. McMillin DR, Peyratout C, Miller C (1984) In: King RB (ed) Encyclopedia of inorganic chemistry, vol 2. Wiley Interscience, Chichester, pp 869–883

  4. Machczynski MC, Vijgenboom E, Samyn B, Canters GW (2004) Protein Sci 13:2388–2397

    Article  PubMed  CAS  Google Scholar 

  5. Shleev S, Christenson A, Serezhenkov V, Burbaev D, Yaropolov A, Ruzgas T (2005) Biochem J 385:745–754

    Article  PubMed  CAS  Google Scholar 

  6. Huang H-W, Sakurai T, Maritano S, Marchesini A, Suzuki S (1999) J Inorg Biochem 75:19–25

    Article  CAS  Google Scholar 

  7. Huang H-W, Sakurai T, Monjushiro H, Takeda S (1998) Biochim Biophys Acta 1384:160–170

    PubMed  CAS  Google Scholar 

  8. Gromov I, Marchesini A, Farver O, Pecht I, Goldfarb D (1998) Eur J Biochem 266:820–830

    Article  Google Scholar 

  9. Messerschmidt A, Rossi A, Ladenstein R, Huber R, Bolognesi M, Gatti G, Marchesini A, Petruzzelli R, Finazzi-Agrò A (1989) J Mol Biol 206:513–529

    Article  PubMed  CAS  Google Scholar 

  10. Messerschmidt A, Ladenstein R, Huber R, Bolognesi M, Avigliano L, Petruzzelli R, Rossi A, Finazzi-Agrò A (1992) J Mol Biol 224:179–205

    Article  PubMed  CAS  Google Scholar 

  11. Messerschmidt A, Steigemann W, Huber R, Lang G, Kronek P MH (1992) Eur J Biochem 209:597–602

    Article  PubMed  CAS  Google Scholar 

  12. Messerschmidt A, Lueke H, Huber R (1993) J Mol Biol 230:997–1014

    Article  PubMed  CAS  Google Scholar 

  13. Piontek K, Antonorini M, Choinovski T (2002) J Biol Chem 277:37663–37669

    Article  PubMed  CAS  Google Scholar 

  14. Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Biochemistry 41:7325–7333

    Article  PubMed  CAS  Google Scholar 

  15. Ducros V, Brzozowski AM, Wilson KS, Brown SH, Ostergaard P, Schneider P, Yaver DS, Pedersen AH, Davies GJ (1998) Nat Struct Biol 5:310–316

    Article  PubMed  CAS  Google Scholar 

  16. Cole JL, Clark PA, Solomon EI (1990) J Am Chem Soc 112:9534–9548

    Article  CAS  Google Scholar 

  17. Dooley DM, Scott RA, Ellinghaus J, Solomon EI, Gray HB (1978) Proc Natl Acad Sci USA 75:3019–3022

    Article  PubMed  CAS  Google Scholar 

  18. Solomon EI, Dooley DM, Wang RH, Gray HB, Cerdonio M, Mogno F, Romani GL (1976) J Am Chem Soc 98:1029–1031

    Article  PubMed  CAS  Google Scholar 

  19. Reinhammar B (1972) Biochim Biophys Acta 275:245–259

    Article  PubMed  CAS  Google Scholar 

  20. Reinhammar B, Vanngard TI (1971) Eur J Biochem 18:463–468

    Article  PubMed  CAS  Google Scholar 

  21. Deinum J, Vanngard T (1973) Biochim Biophys Acta 310:321–330

    PubMed  CAS  Google Scholar 

  22. Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon E I (1996) Biochim Biophys Acta 1292:303–311

    PubMed  Google Scholar 

  23. Xu F, Berka RM, Wahleithner JA, Nelson BN, Shuster JR, Brown SH, Palmer AE, Solomon EI (1998) Biochem J 334:63–70

    PubMed  CAS  Google Scholar 

  24. Xu F, Palmer AE, Yaver DS, Berka RM, Gambetta GA, Brown SH, Solomon EI (1999) J Biol Chem 274:12372–12375

    Article  PubMed  CAS  Google Scholar 

  25. Johnson DL, Thompson JL, Brinkmann SM, Schuller KA, Martin LL (2003) Biochemistry 42:10229–10237

    Article  PubMed  CAS  Google Scholar 

  26. Taniguchi VT, Malmström BG, Anson FC, Gray HB (1982) Proc Natl Acad Sci USA 79:3387–3389

    Article  PubMed  CAS  Google Scholar 

  27. Xu F, Kulys JJ, Duke K, Li K, Krikstopaitis K, Deussen HJ, Abbate E, Galinyte V, Scheneider P (2000) Appl Environ Microbiol 66:2052–2056

    Article  PubMed  CAS  Google Scholar 

  28. Taniguchi VT, Sailasuta-Scott N, Anson FC, Gray HB (1980) Pure Appl Chem 52:2275–2281

    Article  CAS  Google Scholar 

  29. Battistuzzi G, Borsari M, Loschi L, Sola M (1997) J Biol Inorg Chem 2:350–359

    Article  CAS  Google Scholar 

  30. Battistuzzi G, Borsari M, Loschi L, Righi F, Sola M (1999) J Am Chem Soc 121:501–506

    Article  CAS  Google Scholar 

  31. Battistuzzi G, Borsari M, Canters GW, de Waal E, Loschi L, Warmerdam G, Sola M (2001) Biochemistry 40:6707–6712

    Article  PubMed  CAS  Google Scholar 

  32. Battistuzzi G, Borsari M, Loschi L, Menziani MC, De Rienzo F, Sola M (2001) Biochemistry 40:6422–6430

    Article  PubMed  CAS  Google Scholar 

  33. Battistuzzi G, Bellei M, Borsari M, Canters GW, de Waal E, Jeuken LJC, Ranieri A, Sola M (2003) Biochemistry 42:9214–9220

    Article  CAS  Google Scholar 

  34. Battistuzzi G, Borsari M, Di Rocco G, Ranieri A, Sola M (2004) J Biol Inorg Chem 9:23–26

    Article  PubMed  CAS  Google Scholar 

  35. Battistuzzi G, Borsari M, Canters GW, Di Rocco G, de Waal E, Arendsen Y, Leonardi A, Ranieri A, Sola M (2005) Biochemistry 44:9944–9949

    Article  PubMed  CAS  Google Scholar 

  36. Reinhammar B (1970) Biochim Biophys Acta 205:35–47

    Article  PubMed  CAS  Google Scholar 

  37. Sakurai T (1992) Biochemistry 31:9844–9847

    Article  PubMed  CAS  Google Scholar 

  38. Fåhraeus G, Reinhammar B (1967) Acta Chem Scand Ser A 21:2367–2378

    Article  Google Scholar 

  39. Graziani MT, Morpurgo L, Rotilio G, Mondovì B (1976) FEBS Lett 70:87–90

    Article  PubMed  CAS  Google Scholar 

  40. Li J, McMillin DR (1992) Biochim Biophys Acta 1160:239–245

    PubMed  CAS  Google Scholar 

  41. Morpurgo L, Graziani MT, Marcozzi G, Avigliano L (1993) J Inorg Biochem 51:641–647

    Article  CAS  Google Scholar 

  42. Morie-Bebel MM, Morris MC, Mencie JL, McMillin DR (1984) J Am Chem Soc 106:3677–3678

    Article  CAS  Google Scholar 

  43. Leipoldt JG, Bok LDC, Cilliers PJZ (1974) Anorg Allg Chem 409:343–372

    Article  CAS  Google Scholar 

  44. Battistuzzi G, Borsari M, Ranieri A, Sola M (2002) J Am Chem Soc 124:26–27

    Article  PubMed  CAS  Google Scholar 

  45. Battistuzzi G, Bellei M, Bortolotti CA, Di Rocco G, Leonardi A, Sola M (2004) Arch Biochem Biophys 423:317–331

    Article  PubMed  CAS  Google Scholar 

  46. Dong S, Niu J, Cotton TM (1995) Methods Enzymol 246:701–735

    PubMed  CAS  Google Scholar 

  47. Yee EL, Cave RJ, Guyer KL, Tyma PD, Weaver MJ (1979) J Am Chem Soc 101:1131–1137

    Article  CAS  Google Scholar 

  48. Koller KB, Hawkridge FM (1985) J Am Chem Soc 107:7412–7417

    Article  CAS  Google Scholar 

  49. Inubushi T, Becker ED (1983) J Magn Reson 51:128–133

    CAS  Google Scholar 

  50. Wynn RM, Knaff DB, Holverda RA (1984) Biochemistry 23:241–247

    Article  CAS  Google Scholar 

  51. Battistuzzi G, Di Rocco G, Leonardi A, Sola M (2003) J Inorg Biochem 96:503–506

    Article  PubMed  CAS  Google Scholar 

  52. Bertini I, Ciurli S, Dikiy A, Gasanov R, Luchinat C, Martini G, Safarov N (1999) J Am Chem Soc 121:2037–2046

    Article  CAS  Google Scholar 

  53. Bertini I, Fernández CO, Karlsson BG, Leckner J, Luchinat C, Malmström BG, Nersissian AM, Pierattelli R, Shipp E, Valentine JS, Vila AJ (2000) J Am Chem Soc 122:3701–3707

    Article  CAS  Google Scholar 

  54. Donaire A, Jimenez B, Fernandez CO, Pierattelli R, Niizeki T, Moratal JM, Hall JF, Kohzuma T, Hasnain SS, Vila AJ (2002) J Am Chem Soc 124:13698–13708

    Article  PubMed  CAS  Google Scholar 

  55. Banci L, Pierattelli R, Vila AJ (2002) Adv Protein Chem 60:397–449

    PubMed  CAS  Google Scholar 

  56. Fernández CO, Vila AJ (2003) In: Telser J (ed) Paramagnetic resonance of metallobiomolecules, ACS Symposium Series, American Chemical Society, pp 287–303

    Google Scholar 

  57. Bubacco L, Salgado J, Tepper AW, Vijgenboom E, Canters GW (1999) FEBS Lett 442:215–20

    Article  PubMed  CAS  Google Scholar 

  58. LuBien CD, Winkler ME, Thamann TJ, Scott RA, Co MS, Hodgson KO, Solomon EI (1981) J Am Chem Soc 103:7014–7016

    Article  CAS  Google Scholar 

  59. George SD, Basumallick L, Szilagy RK, Randall dW, Hill MG, Nersissian AM, Valentine JS, Hedman B, Hodgson KO, Solomon EI (2003) J Am Chem Soc 125:11314–11328

    Article  PubMed  CAS  Google Scholar 

  60. Berry SM, Ralle M, Low DW, Blackburn NJ, Lu Y (2003) J Am Chem Soc 125:8760–8768

    Article  PubMed  CAS  Google Scholar 

  61. Olsson MHS, Gong G, Warshel A (2003) J Am Chem Soc 125:5025–5039

    Article  PubMed  CAS  Google Scholar 

  62. Li H, Webb SP, Ivanic J, Jensen JH (2004) J Am Chem Soc 126:8010–8019

    Article  PubMed  CAS  Google Scholar 

  63. Datta SN, Sudhamsu J, Pandey A (2004) J Phys Chem B 108:8007–8016

    Article  CAS  Google Scholar 

  64. Solomon EI, Szilagyi RK, DeBeer George S, Basumallick L (2004) Chem Rev 104:419–458

    Article  PubMed  CAS  Google Scholar 

  65. Nitta K, Kataoka K, Sakurai T (2002) J Inorg Biochem 91:125–131

    Article  PubMed  CAS  Google Scholar 

  66. Palmer AE, Randall DW, Xu F, Solomon EI (1999) J Am Chem Soc 121:7138–7149

    Article  CAS  Google Scholar 

  67. Pascher T, Karlsson BG, Nordling M, Malmström BG, Vanngard TI (1993) Eur J Biochem 212:289–296

    Article  PubMed  CAS  Google Scholar 

  68. Grunwald E, Steel C (1995) J Am Chem Soc 117:5687–5692

    Article  CAS  Google Scholar 

  69. Liu L, Guo Q-X (2001) Chem Rev 101:673–695

    Article  PubMed  CAS  Google Scholar 

  70. Severns JC, Mcmillin DR (1990) Biochemistry 29:8592–8597

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministero dell’Universitá e della Ricerca Scientifica e Tecnologica of Italy (Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale, PRIN 2003), by the Fondazione Cassa di Risparmio di Modena 16/4/2002 and by the COST D21 action of the EC (WG D21/0011/01). A.D.C. and R.P. thank the EC (QLK3-99-590) for financial support. A.J.V. thanks NIH (R01-GM068682) and ANPCyT (PICT 01-11625) for financial support and Fundacion Antorchas for a travel grant. Lucia Banci (University of Florence) is gratefully acknowledged for stimulating discussions. Lorenzo Sorace of the LAMM of the University of Florence is gratefully acknowledged for assistance in recording the EPR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianantonio Battistuzzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battistuzzi, G., Bellei, M., Leonardi, A. et al. Reduction thermodynamics of the T1 Cu site in plant and fungal laccases. J Biol Inorg Chem 10, 867–873 (2005). https://doi.org/10.1007/s00775-005-0035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0035-z

Keywords

Navigation