Skip to main content
Log in

Kinetics and DFT studies on the reaction of copper(II) complexes and H2O2

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Copper(II) complexes supported by bulky tridentate ligands L1H (N,N-bis(2-quinolylmethyl)-2-phenylethylamine) and L1Ph (N,N-bis(2-quinolylmethyl)-2,2-diphenylethylamine) have been prepared and their crystal structures as well as some physicochemical properties have been explored. Each complex exhibits a square pyramidal structure containing a coordinated solvent molecule at an equatorial position and a weakly coordinated counter anion (or water) at an axial position. The copper(II) complexes reacted readily with H2O2 at a low temperature to give mononuclear hydroperoxo copper(II) complexes. Kinetics and DFT studies have suggested that, in the initial stage of the reaction, deprotonated hydrogen peroxide attacks the cupric ion, presumably at the axial position, to give a hydroperoxo copper(II) complex retaining the coordinated solvent molecule (H R·S). H R·S then loses the solvent to give a tetragonal copper(II)-hydroperoxo complex (H R), in which the –OOH group may occupy an equatorial position. The copper(II)–hydroperoxo complex H R exhibits a relatively high O–O bond stretching vibration at 900 cm−1 compared to other previously reported examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. Halcrow MA (2004) In: Que Jr L, Tolman WB (eds) Comprehensive Coordination Chemistry II. Elsevier, Oxford, pp 395–436

    Google Scholar 

  2. Mirica LM, Ottenwaelder X, Stack TDP (2004) Chem Rev 104:1013–1045

    PubMed  CAS  Google Scholar 

  3. Lewis EA, Tolman WB (2004) Chem Rev 104:1047–1076

    PubMed  CAS  Google Scholar 

  4. Klinman JP (1996) Chem Rev 96:2541–2561

    PubMed  CAS  Google Scholar 

  5. Chen P, Solomon EI (2004) J Am Chem Soc 126:4991–5000

    PubMed  CAS  Google Scholar 

  6. Francisco WA, Wille G, Smith AJ, Merkler DJ, Klinman JP (2004) J Am Chem Soc 126:13168–13169

    PubMed  CAS  Google Scholar 

  7. Prigge ST, Eipper BA, Mains RE, Amzel LM (2004) Science 304:864–867

    PubMed  ADS  CAS  Google Scholar 

  8. Fujisawa K, Tanaka M, Morooka Y, Kitajima N (1994) J Am Chem Soc 116:12079–12080

    CAS  Google Scholar 

  9. Chen P, Root DE, Campochiaro C, Fujisawa K, Solomon EI (2003) J Am Chem Soc 125:466–474

    PubMed  Google Scholar 

  10. Aboelella NW, Lewis EA, Reynolds AM, Brennessel WW, Cramer CJ, Tolman WB (2002) J Am Chem Soc 124:10660–10661

    PubMed  CAS  Google Scholar 

  11. Aboelella NW, Kryatov SV, Gherman BF, Grennesse WW, Young VG Jr, Sarangi R, Rybak-Akinova EV, Hodgson KO, Hedman B, Solomon EI, Cramer CJ, Tolman WB (2004) J Am Chem Soc 126:16869–16911

    Google Scholar 

  12. Cramer CJ, Tolman WB, Theopold KH, Rheingold AL (2003) Proc Natl Acad Sci USA 100:3635–3640

    PubMed  ADS  CAS  Google Scholar 

  13. Chaudhuri P, Hess M, Weyhermuller T, Wieghardt K (1999) Angew Chem Int Ed 38:1095–1098

    CAS  Google Scholar 

  14. Jazdzewski BA, Reynolds AM, Holland PL, Young VG, Kaderli S, Zuberbühler AD, Tolman WB (2003) J Biol Inorg Chem 8:381–393

    PubMed  CAS  Google Scholar 

  15. Weitzer M, Schindler S, Brehm G, Schneider S, Hormann E, Jung B, Kaderli S, Zuberbühler AD (2003) Inorg Chem 42:1800–1806

    PubMed  CAS  Google Scholar 

  16. Komiyama K, Furutachi H, Nagatomo S, Hashimoto A, Hayashi H, Fujinami S, Suzuki M, Kitagawa T (2004) Bull Chem Soc Jpn 77:59–72

    CAS  Google Scholar 

  17. Schatz M, Raab V, Foxon SP, Brehm G, Schneider S, Reiher M, Holthausen MC, Sundermeyer J, Schindler S (2004) Angew Chem Int Ed 43:4360–4363

    CAS  Google Scholar 

  18. Wada A, Harata M, Hasegawa K, Jitsukawa K, Masuda H, Mukai M, Kitagawa T, Einaga H (1998) Angew Chem Int Ed 37:798–799

    CAS  Google Scholar 

  19. Fujii T, Naito A, Yamaguchi S, Wada A, Funahashi Y, Jitsukawa K, Nagatomo S, Kitagawa T, Masuda H (2003) Chem Commun:2700–2701

  20. Yamaguchi S, Nagatomo S, Kitagawa T, Funahashi Y, Ozawa T, Jitsukawa K, Masuda H (2003) Inorg Chem 42:6968–6970

    PubMed  CAS  Google Scholar 

  21. Ohtsu H, Itoh S, Nagatomo S, Kitagawa T, Ogo S, Watanabe Y, Fukuzumi F (2001) Inorg Chem 40:3200–3207

    PubMed  CAS  Google Scholar 

  22. Chen P, Fujisawa K, Solomon EI (2000) J Am Chem Soc 122:10177–10193

    CAS  Google Scholar 

  23. Kodera M, Kita T, Miura I, Nakayama N, Kawata T, Kano K, Hirota S (2001) J Am Chem Soc 123:7715–7716

    PubMed  CAS  Google Scholar 

  24. Osako T, Nagatomo S, Tachi Y, Kitagawa T, Itoh S (2002) Angew Chem Int Ed 41:4325–4328

    CAS  Google Scholar 

  25. Yamaguchi S, Kumagai A, Nagatomo S, Kitagawa T, Funahashi Y, Ozawa T, Jitsukawa K, Masuda H (2005) Bull Chem Soc Jpn 78:116–124

    CAS  Google Scholar 

  26. Karlin KD, Wei N, Jung B, Kaderli S, Niklaus P, Zuberbühler AD (1993) J Am Chem Soc 115:9506–9514

    CAS  Google Scholar 

  27. Wick PK, Karlin KD, Suzuki M, Zuberbühler AD (2004) Micron 35:137–139

    PubMed  CAS  Google Scholar 

  28. Kryatov SV, Taktak S, Korendovych IV, Rybak-Akimova EV, Kaizer J, Torelli S, Shan X, Mandal S, MacMurdo VL, Payeras AM, Que Jr L (2005) Inorg Chem 44:85–99

    PubMed  CAS  Google Scholar 

  29. Armarego WLF, Perrin DD (1996) Purification of laboratory chemicals. Butterworth-Heinemann, Oxford

    Google Scholar 

  30. Schmider HL, Becke AD (1998) J Chem Phys 108:9624–9631

    ADS  CAS  Google Scholar 

  31. Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Can J Chem 70:612–629

    CAS  Google Scholar 

  32. Hehre WJ, Radom L, von Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  33. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester

    Google Scholar 

  34. Addison AW, Rao TN, Reedijk J, Vanrijn J, Verschoor GC (1984) J Chem Soc Dalton Trans, pp 1349–1356

  35. Solomon EI, Penfield KW, Wilcox DE (1983) Struct Bonding (Berlin) 53:1–57

    Article  CAS  Google Scholar 

  36. Stahl SS, Thorman JL, Nelson RC, Kozee MA (2001) J Am Chem Soc 123:7188–7189

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported in part by Grants-in-Aid for Scientific Research (No. 15350105 for SI) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, by a Research Fellowship from the Japanese Society for the Promotion of Science for Young Scientists (for TO), and by the U.S. National Science Foundation (CHE-0203346 for CJC). The authors also thank Professor William B. Tolman of University of Minnesota for his helpful discussion and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher J. Cramer or Shinobu Itoh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osako, T., Nagatomo, S., Kitagawa, T. et al. Kinetics and DFT studies on the reaction of copper(II) complexes and H2O2 . J Biol Inorg Chem 10, 581–590 (2005). https://doi.org/10.1007/s00775-005-0005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0005-5

Keywords

Navigation