Skip to main content
Log in

Direct monitoring of the electron pool effect of cytochrome c3 by highly sensitive EQCM measurements

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Cytochrome c3 from Desulfovibrio vulgaris has four hemes per molecule, and a redox change at the hemes alters the conformation of the protein, leading to a redox-dependent change in the interaction of cytochrome c3 with redox partners (an electron acceptor or an electron donor). The redox-dependent change in this interaction was directly monitored by the high-performance electrochemical quartz crystal microbalance (EQCM) technique that has been improved to give high sensitivity in solution. In this method, cytochrome c3 molecules in solution associate electrostatically with a viologen-immobilized quartz crystal electrode as a monolayer, and redox of the associating cytochrome c3 is controlled by the immobilized viologen. This technique makes it possible to measure the access of cytochrome c3 to the electrode or repulsion from the electrode, and hence interconversion between an electrostatic complex and an electron transfer complex on the cytochrome c3 and the viologen as a mass change accompanying a potential sweep is monitored. In addition, simultaneous measurement of a mass change and a potential step reveals that the cytochrome c3 stores electrons when the four hemes are reduced (an electron pool effect), that is, the oxidized cytochrome c3 facilitates acceptance of electrons from the immobilized viologen molecule, but the reduced cytochrome c3 donates the accepted electrons to the viologen with difficulty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. King GS, Binstead RA, Wright PE (1985) Biochim Biophys Acta 806:261–262

    Google Scholar 

  2. Bagby S, Driscoll PC, Goodall KG, Redfield C, Hill HAO (1990) Eur J Biochem 188:413–420

    CAS  PubMed  Google Scholar 

  3. Ubbink M, Bendall DS (1997) Biochemistry 36:6326–6335

    CAS  PubMed  Google Scholar 

  4. Augustin MA, Champman SK, Davies DM, Sykes AG, Speck SH, Margoliash EJ (1983) J Biol Chem 258:6405–6409

    CAS  PubMed  Google Scholar 

  5. Crnogorac MM, Shen C, Young S, Hasson O, Kostić NM (1996) Biochemistry 35:16465–16474

    CAS  PubMed  Google Scholar 

  6. Crnogorac MM, Ullmann GM, Kostić NM (2001) J Am Chem Soc 123:10789–10798

    CAS  PubMed  Google Scholar 

  7. Weber C, Michel B, Bosshard HR (1987) Proc Natl Acad Sci USA 84:6687–6691

    CAS  PubMed  Google Scholar 

  8. Hildebrandt P, Heimburg T, Marsh D, Powell GL (1990) Biochemistry 29:1661–1668

    CAS  PubMed  Google Scholar 

  9. Wirtz M, Klucik J, Rivera M (2000) J Am Chem Soc 122:1047–1056

    CAS  Google Scholar 

  10. Döpner S, Hildebrandt P, Rosell FI, Mauk AG, von Walter M, Buse G, Soulimane T (1999) Eur J Biochem 261:379–391

    PubMed  Google Scholar 

  11. Tollin G, Brown K, De Francesco R, Edmondson DE (1987) Biochemistry 26:5042–5048

    CAS  PubMed  Google Scholar 

  12. Avila A, Gregory BW, Niki K, Cotton TM (2000) J Phys Chem B 104:2759–2766

    CAS  Google Scholar 

  13. Murgida DM, Hidebrant P (2001) J Phys Chem B 105:1578–1586

    CAS  Google Scholar 

  14. Jeuken LJC, van Vliet P, Verbeet MPh, Camba R, McEvoy JP, Armstrong FA, Canters GW (2000) J Am Chem Soc 122:12186–12194

    CAS  Google Scholar 

  15. Pletneva EV, Fulton DB, Kohzuma T, Kostić NM (2000) J Am Chem Soc 122:1034–1046

    CAS  Google Scholar 

  16. Barker PD, Mauk AG (1992) J Am Chem Soc 114:3619–3624

    CAS  Google Scholar 

  17. Butt JN, Sucheta A, Martin LL, Shen B, Burgess KB, Armstrong FA, (1992) J Am Chem Soc 115:12587–12588

    Google Scholar 

  18. Walker MC, Tollin G (1991) Biochemistry 30:5546–5555

    CAS  PubMed  Google Scholar 

  19. Willner I, Lion-Dagan M, Marx-Tibbon S, Katz E (1995) J Am Chem Soc 117:6581–6592

    CAS  Google Scholar 

  20. Lecomte S, Hildebrandt P, Soulimane T (1999) J Phys Chem B 103:10053–10064

    Article  CAS  Google Scholar 

  21. Song S, Clark RA, Bowden EF, Tarlov MJ (1993) J Phys Chem 97:6564–6572

    CAS  Google Scholar 

  22. Guidelli R, Aloisi G, Becucci L, Dolfi A, Moncelli MR, Buoninsegni FT (2001) J Electroanal Chem 504:1–28

    CAS  Google Scholar 

  23. Sagara T, Niwa K, Sone A, Hinnen C, Niki K (1990) Langmuir 6:254–262

    CAS  Google Scholar 

  24. Asakura N, Kamachi T, Okura I (2003) Anal Biochem 314:153–157

    CAS  PubMed  Google Scholar 

  25. Yagi T, Honya M, Tamiya N (1968) Biochim Biophys Acta 153:699–705

    CAS  PubMed  Google Scholar 

  26. Louro RO, Catarino T, LeGall J, Xavier AV (1997) J Biol Inorg Chem 2:488–491

    CAS  Google Scholar 

  27. Turner DL, Salgueiro CA, Catarino T, LeGall J, Xavier AV (1996) Eur J Biochem 241:723–731

    CAS  PubMed  Google Scholar 

  28. Niki K, Yagi T, Inokuchi H, Kimura K (1979) J Am Chem Soc 101:3335–3339

    CAS  Google Scholar 

  29. Louro RO, Catarino T, Turner DL, Antonieta MP-P, Pacheco I, LeGall J, Xavier AV (1998) Biochemistry 37:15808–15815

    CAS  PubMed  Google Scholar 

  30. Dolla A, Florens L, Bianco P, Haladjian J, Voordouw G, Forest E, Wall J, Guerlesquin F, Bruschi, MJ (1994) Biol Chem 269:6340–6346

    CAS  Google Scholar 

  31. Salgueiro CA, da Costa PN, Turner DL, Messias CA, van Dongen WMAM, Saraivia LM, Xavier AV (2001) Biochemistry 40:9709–9716

    CAS  PubMed  Google Scholar 

  32. Kamachi T, Hiraishi T, Okura I (1995) Chem Lett 33

  33. Yagi T Marukawa K (1971) Biochim Biophys Acta 243:214–224

    CAS  PubMed  Google Scholar 

  34. Buttry DA, Ward DM (1992) Chem Rev 92:1355–1379

    CAS  Google Scholar 

  35. Buttry DA (1991) In: Bard AJ (ed) Electroanalytical chemistry. A series of advances, vol 17. Dekker, New York, pp 1–85

  36. Donohue JJ, Buttry DA (1989) Langmuir 5:671–678

    CAS  Google Scholar 

  37. De Long HC, Buttry DA (1990) Langmuir 6:1319–1322

    Google Scholar 

  38. Nordyke LL, Buttry DA (1991) Langmuir 7:380–388

    CAS  Google Scholar 

  39. Yoshimoto S, Sawaguchi T, Mizutani F, Taniguchi I (2000) Electrochem Commun 2: 39–43

    CAS  Google Scholar 

  40. Yoshimoto S, Yoshida M, Kobayashi S, Nozute S, Miyawaki T, Hashimoto Y, Taniguchi I (1999) J Electroanal Chem 473:85–92

    CAS  Google Scholar 

  41. Bunding Lee KA (1990) Langmuir 6:709–712

    Google Scholar 

  42. Taniguchi I (1997) Interface 4:34–37

    Google Scholar 

  43. Taniguchi I, Toyosawa K, Yamaguchi H, Yasukouchi K (1982) J Electroanal Chem 140:187–193

    CAS  Google Scholar 

  44. Hill HAO, Page DJ, Walton NJ (1985) J Electroanal Chem 187:315–324

    CAS  Google Scholar 

  45. Pershad HR, Duff JLD, Heering HA, Duin EC, Albracht SPJ, Armstrong FA (1999) Biochemistry 38:8992–8999

    CAS  PubMed  Google Scholar 

  46. Albracht SPJ (1994) Biochim Biophys Acta 1118:167–204

    Google Scholar 

  47. Volbeda A, Charon M-H, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Nature 373:580–587

    Article  CAS  PubMed  Google Scholar 

  48. Rousset M, Montet Y, Guigliarelli B, Foget N, Asso M, Bertrand P, Fontecilla-Camps JC, Hatchikian EC (1998) Proc Natl Acad Sci USA 95:11625–11630

    CAS  PubMed  Google Scholar 

  49. Van der Zwaan JW, Albracht SPJ, Fontijn RD, Mul P (1987) Eur J Biochem 169:377–384

    PubMed  Google Scholar 

  50. Nishiyama K, Ishida H, Taniguchi I (1994) J Electroanal Chem 373:255–258

    CAS  Google Scholar 

  51. Taniguchi I, Hirakawa Y, Iwakiri K, Tominaga M, Nishiyama K (1994) J Chem Soc Chem Commun 953–954

Download references

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research on Priority Area (no.14050032) from the Ministry of Education, Culture, Sports, Science and Technology, Japan and the Core Research for Evolutional Science and Technology (CREST) program of Japan Science and Technology Corporation (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Okura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asakura, N., Kamachi, T. & Okura, I. Direct monitoring of the electron pool effect of cytochrome c3 by highly sensitive EQCM measurements. J Biol Inorg Chem 9, 1007–1016 (2004). https://doi.org/10.1007/s00775-004-0604-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0604-6

Keywords

Navigation