Skip to main content
Log in

Evidence for ditopic coordination of phosphate diesters to [Mg(15-crown-5)]2+. Implications for magnesium biocoordination chemistry

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The interaction of a series of phosphate diesters and triesters (1=diphenyl phosphate, 2=dimethyl phosphate, 3=bis(2-ethylhexyl) phosphate, 4=trimethyl phosphate, 5=methyldiphenyl phosphate, 6=triphenyl phosphate) with [Mg(15-crown-5)]2+ (15-crown-5=1,4,7,10,13-pentaoxocyclopentadecane) was studied as a simplified model for the interaction of aqueous Mg2+ ion with phosphate-containing biomolecules such as RNA. Using electrospray mass spectrometry, we confirm the formation of 1:1 adducts in the gas phase. Proton and 31P NMR titration data were used to construct binding isotherms, and a 1:1 binding equilibrium was fit to the isotherms at room temperature to estimate the binding affinities. The binding affinity data are consistent with ditopic coordination of neutral dialkyl phosphate ligands to the [Mg(15-crown-5)]2+ unit. This involves inner-sphere coordination to the Mg2+ via an oxygen atom, which is complemented by a weak hydrogen-bonding interaction with the crown ether ligand. Ditopic interaction is consistent with low-temperature NMR spectra showing four different configurations for 1 coordinated to [Mg(15-crown-5)]2+, which are interpreted in terms of hindered rotation around the Mg–Ophos bond. Thermochemical analysis of the binding affinity data suggests that the second-shell interaction contributes only about 1 kcal/mol to the binding free energy, so additional factors, such as steric constraints, must be operative to give a preferred phosphate orientation in this system. However, the experimental data do suggest that second-shell interactions contribute as much as 40% of the total binding energy, consistent with the pronounced ability of aqueous Mg2+ to form salt-bridges linking secondary and tertiary elements of RNA structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3a–e
Fig. 4a–f
Fig. 5
Scheme 2
Fig. 6a–h
Fig. 7
Scheme 3

Similar content being viewed by others

Abbreviations

OTf:

trifluoromethanesulfonate

ESI-MS:

electrospray mass spectrometry

References

  1. Cech, TR (1988) JAMA 260:3030–3034

    Article  CAS  PubMed  Google Scholar 

  2. Macpherson JL, Ely JA, Sun LQ, Symonds, GP (1999) Front Bioscience 4: D497–505

    CAS  Google Scholar 

  3. Rossi JJ (1999) Curr Opin Mol Ther 1:316–322.

    CAS  PubMed  Google Scholar 

  4. Goodchild J (2000) Curr Opin Mol Ther 2:272–281

    CAS  PubMed  Google Scholar 

  5. James HA (2000) Expert Opin Invest Drugs 9:1009–1020

    CAS  Google Scholar 

  6. Sullenger BA, Milich L (2000) Gene Ther 291–304

  7. Zein NN (2001) Expert Opin Invest Drugs 10:1457–1469

    CAS  Google Scholar 

  8. Fanning GC, Macpherson JL, Symonds G (2002) Pathogen Genom 39–51

  9. Fritz JJ, White DA, Lewin AS, Hauswirth WW (2002) Methods Enzymol 346:358–377

    Article  CAS  PubMed  Google Scholar 

  10. Karayiannis P (2003) J Antimicrob Chemother 51:761–785

    Article  CAS  PubMed  Google Scholar 

  11. Uchida T, Takamoto K, He Q, Chance MR, Brenowitz M (2003) J Mol Biol 328:463–478

    Article  CAS  PubMed  Google Scholar 

  12. Fang XW, Thiyagarajan P, Sosnick TR, Pan T (2002) Proc Natl Acad Sci USA 99:8518–8523

    Article  CAS  PubMed  Google Scholar 

  13. Swisher JF, Su LJ, Brenowitz M, Anderson VE, Pyle AM (2002) J Mol Biol 315:297–310

    Article  CAS  PubMed  Google Scholar 

  14. Wilson TJ, Zhao Z-Y, Maxwell K, Kontogiannis L, Lilley DMJ (2001) Biochemistry 40:2291–2302

    Article  CAS  PubMed  Google Scholar 

  15. Heilman-Miller SL, Pan J, Thirumalai D, Woodson SA (2001) J Mol Biol 309:57–68

    Article  CAS  PubMed  Google Scholar 

  16. Deras ML, Brenowitz M, Ralston CY, Chance MR, Woodson SA (2000) Biochemistry 39:10975–10985

    Article  CAS  PubMed  Google Scholar 

  17. (a) Ananvoranich S, Perreault J-P (2000) Biochem Biophys Commun 270:600–607; (b) Fang X-W, Pan T, Sosnick TR (1999) Nature Struct Biol 6:1091–1095

    Google Scholar 

  18. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  Google Scholar 

  19. Juneau K, Podell E, Harrington DJ, Cech TR (2001) Structure 9:221–231

    Article  CAS  PubMed  Google Scholar 

  20. Cate JH, Hanna RL, Doudna JA (1997) Nat Struct Biol 4:553–558

    CAS  PubMed  Google Scholar 

  21. Cate JH, Doudna JA (1996) Structure 4:1221–1229

    Article  CAS  PubMed  Google Scholar 

  22. Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE, Cech TR, Doudna JA (1996) Science 273:1678–1685

    CAS  PubMed  Google Scholar 

  23. Shan S-O, Kravchuk AV, Piccirilli JA, Herschlag D (2001) Biochemistry 40:5161–5171

    CAS  PubMed  Google Scholar 

  24. Weinstein LB, Jones BCNM, Cosstick R, Cech TR (1997) Nature 388:805–808

    Article  CAS  PubMed  Google Scholar 

  25. Christian EL, Kaye NM, Harris ME (2002) EMBO J 21:2253–2262

    Article  CAS  PubMed  Google Scholar 

  26. Warnecke JM, Held R, Busch S, Hartmann RK (1999) J Mol Biol 290:433–445

    Article  CAS  PubMed  Google Scholar 

  27. Steitz TA, Steitz JA (1993) Proc Natl Acad Sci USA 90:6498–502

    CAS  PubMed  Google Scholar 

  28. Iranzo O, Elmer T, Richard JP, Morrow JR (2003) Inorg Chem 42:7737–7746

    Article  CAS  PubMed  Google Scholar 

  29. Williams NH (2000) J Am Chem Soc 122:12023–12024

    Article  CAS  Google Scholar 

  30. Bruice TC, Tsubouchi A, Dempcy RO, Olson LP (1996) J Am Chem Soc 118:9867–9875

    Article  CAS  Google Scholar 

  31. Dempcy RO, Bruice TC (1994) J Am Chem Soc 116:4511–4512

    CAS  Google Scholar 

  32. Gordon PM, Sontheimer EJ, Piccirilli JA (2000) Biochemistry 39:12939–12952

    Article  CAS  PubMed  Google Scholar 

  33. Nesbitt S, Hegg LA, Fedor MJ (1997) Chem Biol 4:619–630

    Article  CAS  PubMed  Google Scholar 

  34. Hampel A, Cowan JA (1997) Chem Biol 4:513–517

    Article  CAS  PubMed  Google Scholar 

  35. Young KJ, Gill F, Grasby JA (1997) Nucleic Acids Res 25:3760–3766

    Article  CAS  PubMed  Google Scholar 

  36. Seyhan AA, Burke JM (2000) RNA 6:189–198

    Article  CAS  PubMed  Google Scholar 

  37. Schiemann O, Fritscher J, Kisseleva N, Sigurdsson ST, Prisner, TF (2003) ChemBioChem 4:1057–1065

    Article  CAS  PubMed  Google Scholar 

  38. Hoogstraten CG, Britt RD (2002) RNA 8:252–260

    Article  CAS  PubMed  Google Scholar 

  39. Hoogstraten CG, Grant CV, Horton TE, DeRose VJ, Britt RD (2002) J Am Chem Soc 124:834–842

    Article  CAS  PubMed  Google Scholar 

  40. Feig AL (2000) Met Ions Biol Syst 37:157–182

    CAS  PubMed  Google Scholar 

  41. Morrissey SR, Horton TE, Grant CV, Hoogstraten CG, Britt RD, DeRose VJ (1999) J Am Chem Soc 121:9215–9218

    Article  CAS  Google Scholar 

  42. Horton TE, Clardy DR, DeRose VJ (1998) Biochemistry 37:18094–18101

    Article  CAS  PubMed  Google Scholar 

  43. Hunsicker LM, DeRose VJ (2000) J Inorg Biochem 80:271–281

    Article  CAS  PubMed  Google Scholar 

  44. Tanaka Y, Kasai Y, Mochizuki S, Wakisaka A, Morita EH, Kojima C, Toyozawa A, Kondo Y, Taki M, Takagi Y, Inoue A, Yamasaki K, Taira K (2004) J Am Chem Soc 126:744–752

    Article  CAS  PubMed  Google Scholar 

  45. Glasner ME, Bergman NiH,Bartel DP (2002) Biochemistry 41:8103–8112.

    Article  CAS  PubMed  Google Scholar 

  46. Maguire JL, Collins RA (2001) J Mol Biol 309:45–56

    Article  CAS  PubMed  Google Scholar 

  47. Horton TE, DeRose VJ (2000) Biochemistry 39:11408–11416.

    Article  CAS  PubMed  Google Scholar 

  48. Butcher SE, Allain FH, Feigon J (2000) Biochemistry 39:2174–2182

    Article  CAS  PubMed  Google Scholar 

  49. Dudev T, Cowan JA, Lim C (1999) J Am Chem Soc 121:7665–7673

    Article  CAS  Google Scholar 

  50. Sanchez ER, Gessel MC, Groy TL, Caudle MT (2002) J Am Chem Soc 124:1933–1940

    Article  CAS  PubMed  Google Scholar 

  51. Aksyonov S, Williams P (2001) Rapid Commun Mass Spectrom 15:1890–1891

    Article  CAS  PubMed  Google Scholar 

  52. Chadwick S, Englich U, Ruhlandt-Senge K (1999) Inorg Chem 38:6289–6293

    Article  CAS  PubMed  Google Scholar 

  53. Rubtsova TB, Kireeva OK, Bulychev BM, Streltsova NP, Belsky VK, Tarasov BP (1992) Polyhedron 11:1929–1938

    Article  CAS  Google Scholar 

  54. Owen JD (1978) J Chem Soc Dalton Trans 1418–1423

  55. Mastryukova TA, Melent’eva TA, Shipov AE, Kabachnik MI (1959) Zh Obshch Khim 29:2178–2182

    CAS  Google Scholar 

  56. Guseva NN, Sklenskaya EV, Karapet’yants MK, Mikhailichenko AI (1974) Radiokhimiya 16:273–275

    CAS  Google Scholar 

  57. Galkin VI, Sayakhov RD, Garifzyanov AR, Cherkasov RA, Pudovik AN (1991) Dokl Akad Nauk, Engl Transl 318:114–116

    Google Scholar 

  58. Bandyopadhyay G, Lahiri SC (2002) Z Phys Chem (Munich) 216:729–735

    Google Scholar 

  59. Perevalov SA, Lebedev IA, Myasoedov BF (1987) Radiokhimiya 29:593–599

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation (CHE-9985266). ERS acknowledges MGE@MSE for support. We acknowledge Sergei Aksyanov for assistance in collecting electrospray mass-spectrometry data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tyler Caudle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez, E.R., Caudle, M.T. Evidence for ditopic coordination of phosphate diesters to [Mg(15-crown-5)]2+. Implications for magnesium biocoordination chemistry. J Biol Inorg Chem 9, 724–732 (2004). https://doi.org/10.1007/s00775-004-0568-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0568-6

Keywords

Navigation