Skip to main content

Advertisement

Log in

Spectroscopic and computational insights into the geometric and electronic properties of the A-cluster of acetyl-coenzyme A synthase

  • Commentary
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

For the last two decades, the bifunctional enzyme acetyl-coenzyme A synthase/carbon monoxide dehydrogenase (ACS/CODH) from Moorella thermoacetica has been the subject of considerable research aimed at elucidating the geometric and electronic properties of the A-cluster, which serves as the active site for ACS catalysis. While the recent success in obtaining high-resolution X-ray structures of this enzyme solved many of the mysteries regarding the number, identities, and coordination environments of the metal centers of the A-cluster, fundamental questions concerning the catalytic mechanism of this highly elaborate polynuclear active site have yet to be answered. This Commentary summarizes relevant information obtained from spectroscopic and computational studies on the oxidized, reduced, and CO-bound forms of the A-cluster and highlights some of the key issues regarding the electronic properties and reactivity of this cluster that need to be addressed in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ragsdale SW, Kumar M (1996) Chem Rev 96:2515–2539

    Article  CAS  PubMed  Google Scholar 

  2. Doukov TI, Iverson TM, Seravalli J, Ragsdale SW, Drennan CL (2002) Science 298:567–572

    Article  CAS  PubMed  Google Scholar 

  3. Darnault C, Volbeda A, Kim EJ, Legrand P, Vernede X, Lindahl PA, Fontecilla-Camps JC (2003) Nat Struct Biol 10:271–279

    Article  CAS  PubMed  Google Scholar 

  4. Lindahl PA, Ragsdale SW, Münck E (1990) J Biol Chem 265:3880–3888

    CAS  PubMed  Google Scholar 

  5. Xia JQ, Hu ZG, Popescu CV, Lindahl PA, Münck E (1997) J Am Chem Soc 119:8301–8312

    Article  CAS  Google Scholar 

  6. Russell WK, Stålhandske CMV, Xia J, Scott RA, Lindahl PA (1998) J Am Chem Soc 120:7502–7510

    Article  CAS  Google Scholar 

  7. Ragsdale SW, Ljungdahl LG, DerVartanian DV (1982) Biochem Biophys Res Commun 108:658–663

    CAS  PubMed  Google Scholar 

  8. Ragsdale SW, Ljungdahl LG, DerVartanian DV (1983) Biochem Biophys Res Commun 115:658–665

    CAS  PubMed  Google Scholar 

  9. Ragsdale SW, Wood HG, Antholine WE (1985) Proc Natl Acad Sci USA 82:6811–6814

    CAS  PubMed  Google Scholar 

  10. Maynard EL, Tan X, Lindahl PA (2004) J Biol Inorg Chem 9:316–322

    Article  CAS  PubMed  Google Scholar 

  11. Fan CL, Gorst CM, Ragsdale SW, Hoffman BM (1991) Biochemistry 30:431–435

    CAS  PubMed  Google Scholar 

  12. Xia JQ, Lindahl PA (1995) Biochemistry 34:6037–6042

    CAS  PubMed  Google Scholar 

  13. Xia JQ, Dong J, Wang SK, Scott RA, Lindahl PA (1995) J Am Chem Soc 117:7065–7070

    CAS  Google Scholar 

  14. Xia JQ, Lindahl PA (1996) J Am Chem Soc 118:483–484

    Article  CAS  Google Scholar 

  15. Lindahl PA, Münck E, Ragsdale SW (1990) J Biol Chem 265:3873–3879

    CAS  PubMed  Google Scholar 

  16. Loke H-K, Bennett GN, Lindahl PA (2000) Proc Natl Acad Sci USA 97:12530–12535

    Article  CAS  PubMed  Google Scholar 

  17. Loke H-K, Tan X, Lindahl PA (2002) J Am Chem Soc 124:8667–8672

    Article  CAS  PubMed  Google Scholar 

  18. Shin W, Lindahl PA (1992) J Am Chem Soc 114:9718–9719

    CAS  Google Scholar 

  19. Shin WS, Lindahl PA (1992) Biochemistry 31:12870–12875

    CAS  PubMed  Google Scholar 

  20. Shin WS, Anderson ME, Lindahl PA (1993) J Am Chem Soc 115:5522–5526

    CAS  Google Scholar 

  21. Schenker RP, Brunold TC (2003) J Am Chem Soc 125:13962–13963

    Article  CAS  PubMed  Google Scholar 

  22. Bramlett MR, Tan X, Lindahl PA (2003) J Am Chem Soc 125:9316–9317

    Article  CAS  PubMed  Google Scholar 

  23. Chen J, Huang S, Seravalli J, Gutzman H Jr, Swartz DJ, Ragsdale SW, Bagley KA (2003) Biochemistry 42:14822–14830

    Article  CAS  PubMed  Google Scholar 

  24. Krishnan R, Voo JK, Riordan CG, Zahkarov L, Rheingold AL (2003) J Am Chem Soc 125:4422–4423

    Article  CAS  PubMed  Google Scholar 

  25. Seravalli J, Xiao Y, Gu W, Cramer SP, Antholine WE, Krymov V, Gerfen GJ, Ragsdale SW (2004) Biochemistry 43:3944–3955

    Article  CAS  PubMed  Google Scholar 

  26. Münck E, Huynh BH (1979) In: Bertini I, Drago RS (eds) ESR and NMR of paramagnetic species in biological and related systems. Reidel, Dordrecht, Holland, pp 275–288

  27. Münck E (2000) In: Que L Jr (ed) Physical methods in bioinorganic chemistry. University Science Books, Sausalito, Calif., USA, pp 287–319

  28. Telser J, Horng YC, Becker DF, Hoffman BM, Ragsdale SW (2000) J Am Chem Soc 122:182–183

    Article  CAS  Google Scholar 

  29. Telser J, Davydov R, Horng YC, Ragsdale SW, Hoffman BM (2001) J Am Chem Soc 123:5853–5860

    Article  CAS  PubMed  Google Scholar 

  30. Kumar M, Ragsdale SW (1992) J Am Chem Soc 114:8713–8715

    CAS  Google Scholar 

  31. Lu WP, Harder SR, Ragsdale SW (1990) J Biol Chem 265:3124–3133

    CAS  PubMed  Google Scholar 

  32. Gorst CM, Ragsdale SW (1991) J Biol Chem 266:20687–20693

    CAS  PubMed  Google Scholar 

  33. Schebler PJ, Mandimutsira BS, Riordan CG, Liable-Sands LM, Incarvito CD, Rheingold AL (2001) J Am Chem Soc 123:331–332

    Article  CAS  PubMed  Google Scholar 

  34. Craft JL, Mandimutsira BS, Flujita K, Riordan CG, Brunold TC (2003) Inorg Chem 42:859–867

    Article  CAS  PubMed  Google Scholar 

  35. Chasteen ND, Snetsinger PA (2000) In: Que L Jr (ed) Physical methods in bioinorganic chemistry. University Science Books, Sausalito, Calif., USA, pp 187–231

  36. Hoffman BM (2003) Acc Chem Res 36:522–529

    Article  CAS  PubMed  Google Scholar 

  37. Bominaar EL, Hu Z, Münck E, Girerd J-J, Borshch SA (1995) J Am Chem Soc 117:6976–6989

    CAS  Google Scholar 

  38. Solomon EI (1984) Comments Inorg Chem 3:227–320

    Google Scholar 

  39. Palmer G (2000) In: Que L Jr (ed) Physical methods in bioinorganic chemistry. University Science Books, Sausalito, Calif., USA, pp 121–185

  40. Seravalli J, Gu WW, Tam A, Strauss E, Begley TP, Cramer SP, Ragsdale SW (2003) Proc Natl Acad Sci USA 100:3689–3694

    Article  CAS  PubMed  Google Scholar 

  41. van Lenthe E, Snijders JG, Baerends EJ (1996) J Chem Phys 105:6505–6516

    Article  Google Scholar 

  42. Webster CE, Darensbourg MY, Lindahl PA, Hall MB (2004) J Am Chem Soc 126:3410–3411

    Article  CAS  PubMed  Google Scholar 

  43. Wood HG, Ragsdale SW, Pezacka E (1986) Biochem Int 12:421–440

    CAS  PubMed  Google Scholar 

  44. Ragsdale SW, Wood HG (1985) J Biol Chem 260:3970–3977

    CAS  PubMed  Google Scholar 

  45. Barondeau DP, Lindahl PA (1997) J Am Chem Soc 119:3959–3970

    Article  CAS  Google Scholar 

  46. Tan XS, Sewell C, Yang Q, Lindahl PA (2003) J Am Chem Soc 125:318–319

    Article  CAS  PubMed  Google Scholar 

  47. Musie G, Farmer PJ, Tuntulani T, Reibenspies JH, Darensbourg MY (1996) Inorg Chem 35:2176–2183

    Article  CAS  PubMed  Google Scholar 

  48. Ragsdale SW (1998) Curr Opin Chem Biol 2:208–215

    Article  CAS  PubMed  Google Scholar 

  49. Pye CC, Ziegler T (1999) Theor Chem Acc 101:396–408

    Article  CAS  Google Scholar 

  50. Russell WK, Lindahl PA (1998) Biochemistry 37:10016–10026

    Article  CAS  PubMed  Google Scholar 

  51. Brunold TC, Gamelin DR, Solomon EI (2000) J Am Chem Soc 122:8511–8523

    Article  CAS  Google Scholar 

  52. Scott RA (2000) In: Que L Jr (ed) Physical methods in bioinorganic chemistry. University Science Books, Sausalito, Calif., USA, pp 465–503

  53. Ram MS, Riordan CG (1995) J Am Chem Soc 117:2365–2366

    CAS  Google Scholar 

  54. Ram MS, Riordan CG, Yap GPA, Liable-Sands L, Rheingold AL, Marchaj A, Norton JR (1997) J Am Chem Soc 119:1648–1655

    Article  Google Scholar 

  55. Shin WS, Lindahl PA (1993) Biochim Biophys Acta 1161:317–322

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Dr Ralph Schenker, Adam Fiedler, and Timothy Jackson for valuable discussions and acknowledges the University of Wisconsin and the Sloan Foundation Research Fellowship Program for financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Brunold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunold, T.C. Spectroscopic and computational insights into the geometric and electronic properties of the A-cluster of acetyl-coenzyme A synthase. J Biol Inorg Chem 9, 533–541 (2004). https://doi.org/10.1007/s00775-004-0566-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0566-8

Keywords

Navigation