Skip to main content
Log in

Spectroscopic investigation of the nickel-containing porphinoid cofactor F430. Comparison of the free cofactor in the +1, +2 and +3 oxidation states with the cofactor bound to methyl-coenzyme M reductase in the silent, red and ox forms

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Methyl-coenzyme M reductase (MCR) catalyzes the methane-forming step in methanogenic archaea. It contains the nickel porphinoid F430, a prosthetic group that has been proposed to be directly involved in the catalytic cycle by the direct binding and subsequent reduction of the substrate methyl-coenzyme M. The active enzyme (MCRred1) can be generated in vivo and in vitro by reduction from MCRox1, which is an inactive form of the enzyme. Both the MCRred1 and MCRox1 forms have been proposed to contain F430 in the Ni(I) oxidation state on the basis of EPR and ENDOR data. In order to further address the oxidation state of the Ni center in F430, variable-temperature, variable-field magnetic circular dichroism (VTVH MCD), coupled with parallel absorption and EPR studies, have been used to compare the electronic and magnetic properties of MCRred1, MCRox1, and various EPR silent forms of MCR, with those of the isolated penta-methylated cofactor (F430M) in the +1, +2 and +3 oxidation states. The results confirm Ni(I) assignments for MCRred1 and MCRred2 forms of MCR and reveal charge transfer transitions involving the Ni d orbitals and the macrocycle π orbitals that are unique to Ni(I) forms of F430. Ligand field transitions associated with S=1 Ni(II) centers are assigned in the near-IR MCD spectra of MCRox1-silent and MCR-silent, and the splitting in the lowest energy d–d transition is shown to correlate qualitatively with assessments of the zero-field splitting parameters determined by analysis of VTVH MCD saturation magnetization data. The MCD studies also support rationalization of MCRox1 as a tetragonally compressed Ni(III) center with an axial thiolate ligand or a coupled Ni(II)-thiyl radical species, with the reality probably lying between these two extremes. The reinterpretation of MCRox1 as a formal Ni(III) species rather than an Ni(I) species obviates the need to invoke a two-electron reduction of the F430 macrocyclic ligand on reductive activation of MCRox1 to yield MCRred1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

F430 :

cofactor 430

F430M:

penta-methylated form of cofactor 430

Ni(I)F430M:

F430M with the nickel atom in the +1 oxidation state

Ni(II)F430M:

F430M with the nickel atom in the +2 oxidation state

Ni(III)F430M:

F430M with the nickel atom in the +3 oxidation state

MCR:

methyl-coenzyme M reductase

MCRox1:

MCR exhibiting the MCR-ox1 EPR signal

MCRox1-silent:

EPR silent form of MCR obtained from the MCRox1 form

MCRred1:

MCR exhibiting the EPR signals red1c and/or red1m

MCRred1c:

MCRred1 in the presence of coenzyme M

MCRred1m:

MCRred1 in the presence of methyl-coenzyme M

MCRred2:

MCR exhibiting both the red1 and red2 EPR signals

MCRred1-silent:

EPR silent form of MCR obtained from the MCRred1 form

MCRsilent:

EPR silent form of MCR

References

  1. Thauer RK (1998) Microbiology 144:2377–2406

    PubMed  Google Scholar 

  2. Pfaltz A, Jaun B, Fässler A, Eschenmoser A, Jaenchen R, Gilles HH, Diekert G, Thauer RK (1982) Helv Chim Acta 65:828–865

    CAS  Google Scholar 

  3. Färber G, Keller W, Kratky C, Jaun B, Pfaltz A, Spinner C, Kobelt A, Eschenmoser A (1991) Helv Chim Acta 74:697–716

    Google Scholar 

  4. Hamilton CL, Scott RA, Johnson MK (1989) J Biol Chem 264:11605–11613

    CAS  PubMed  Google Scholar 

  5. Cheesman MR, Ankel-Fuchs D, Thauer RK, Thompson AJ (1989) Biochem J 260:613–616

    CAS  PubMed  Google Scholar 

  6. Pfaltz A, Livingston DA, Jaun B, Diekert G, Thauer RK, Eschenmoser A (1985) Helv Chim Acta 68:1338–1358

    CAS  Google Scholar 

  7. Shiemke AK, Shelnutt JA, Scott RA (1989) J Biol Chem 264:11236–11245

    CAS  PubMed  Google Scholar 

  8. Hamilton CL, Ma L, Renner MW, Scott RA (1991) Biochim Biophys Acta 1074:312–319

    Article  CAS  PubMed  Google Scholar 

  9. Jaun B (1993) In: Sigel H, Sigel A (eds) Metal ions in biological systems. Marcel Dekker, New York, pp 287–337

  10. Jaun B (1990) Helv Chim Acta 73:2209–2217

    CAS  Google Scholar 

  11. Goubeaud M, Schreiner G, Thauer RK (1997) Eur J Biochem 243:110–114

    PubMed  Google Scholar 

  12. Mahlert F, Bauer C, Jaun B, Thauer RK, Duin EC (2002) J Biol Inorg Chem 7:500–513

    CAS  PubMed  Google Scholar 

  13. Mahlert F, Grabarse W, Kahnt J, Thauer RK, Duin EC (2002) J Biol Inorg Chem 7:101–112 and 7:151

    Google Scholar 

  14. Duin EC (2004) In: Warren MJ, Smith A (eds) Tetrapyrroles: their birth, life and death. Landes Bioscience, Georgetown (in press)

  15. Ragsdale SW (2003) In: Kadish KM, Smith KM, Guilard R (eds) Porphyrin handbook. Elsevier, San Diego, pp 205–228

  16. Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK (1997) Science 278:1457–1462

    PubMed  Google Scholar 

  17. Grabarse W, Mahlert F, Shima S, Thauer RK, Ermler U (2000) J Mol Biol 303:329–344

    PubMed  Google Scholar 

  18. Grabarse W, Mahlert F, Duin EC, Goubeaud M, Shima S, Thauer RK, Lamzin V, Ermler U (2001) J Mol Biol 309:315–330

    PubMed  Google Scholar 

  19. Grabarse W, Shima S, Mahlert F, Duin EC, Thauer RK, Ermler U (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins. Wiley, Chichester, pp 897–914

  20. Duin EC, Cosper NJ, Mahlert F, Thauer RK, Scott RA (2003) J Biol Inorg Chem 8:141–148

    Article  CAS  PubMed  Google Scholar 

  21. Tang Q, Carrington PE, Horng YC, Maroney MJ, Ragsdale SW, Bocian DF (2002) J Am Chem Soc 124:13242–13256

    Article  CAS  PubMed  Google Scholar 

  22. Telser J, Davydov R, Horng Y-C, Ragsdale SW, Hoffman BM (2001) J Am Chem Soc 123:5853–5860

    Article  PubMed  Google Scholar 

  23. Telser J, Horng Y-C, Becker DF, Hoffman BM, Ragsdale SW (2000) J Am Chem Soc 122:182–183

    Article  CAS  Google Scholar 

  24. Finazzo C, Harmer J, Jaun B, Duin EC, Mahlert F, Thauer RK, Van Doorslaer S, Schweiger A (2003) J Biol Inorg Chem 8:586–593

    CAS  PubMed  Google Scholar 

  25. Finazzo C, Harmer J, Bauer C, Jaun B, Duin EC, Mahlert F, Goenrich M, Thauer RK, Van Doorslaer S, Schweiger A (2003) J Am Chem Soc 125:4988–4989

    CAS  PubMed  Google Scholar 

  26. Rospert S, Böcher R, Albracht SPJ, Thauer RK (1991) FEBS Lett 291:371–375

    PubMed  Google Scholar 

  27. Piskorski R, Jaun B (2003) J Am Chem Soc 125:13120–13125

    Article  CAS  PubMed  Google Scholar 

  28. Wasserfallen A, Nölling J, Pfister P, Reeve J, de Macario EC (2000) Int J Syst Evol Microbiol 50:43–53

    CAS  PubMed  Google Scholar 

  29. Kobelt A, Pfaltz A, Ankel-Fuchs D, Thauer RK (1987) FEBS Lett 214:265–268

    CAS  Google Scholar 

  30. Ellermann J, Hedderich R, Böcher R, Thauer RK (1988) Eur J Biochem 172:669–677

    PubMed  Google Scholar 

  31. Schönheit P, Moll J, Thauer RK (1980) Arch Microbiol 127:59–65

    Google Scholar 

  32. Rospert S, Linder D, Ellermann J, Thauer RK (1990) Eur J Biochem 194:871–877

    PubMed  Google Scholar 

  33. Bonacker LG, Baudner S, Thauer RK (1992) Eur J Biochem 206:87–92

    PubMed  Google Scholar 

  34. Bonacker LG, Baudner S, Mörschel E, Böcher R, Thauer RK (1993) Eur J Biochem 217:587–595

    PubMed  Google Scholar 

  35. Jaun B, Pfaltz A (1986) J Chem Soc Chem Commun 1327–1329

  36. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  37. Johnson MK (1988) In: Que L Jr (ed) Metal clusters in proteins. American Chemical Society, Washington, DC, pp 326–342

  38. Thomson AJ, Cheesman MR, George SJ (1993) Methods Enzymol 226:199–232

    CAS  PubMed  Google Scholar 

  39. Johnson MK (2000) In: Que L Jr (ed) Physical methods in bioinorganic chemistry. University Science Books, Sausalito, pp 233–285

  40. Neese F, Solomon EI (1999) Inorg Chem 38:1847–1865

    Article  CAS  PubMed  Google Scholar 

  41. Beinert H, Albracht SPJ (1982) Biochim Biophys Acta 683:245–277

    PubMed  Google Scholar 

  42. Margerum DW, Anliker SL (1988) In: Lancaster JR Jr (ed) The bioinorganic chemistry of nickel. VCH Verlagsgesellschaft, Weinheim, Germany, pp 29–51

  43. Salerno JC (1988) In: Lancaster JR Jr (ed) The bioinorganic chemistry of nickel. VCH Verlagsgesellschaft, Weinheim, Germany, pp 53–71

  44. Renner MW, Fajer J (2001) J Biol Inorg Chem 6:823–830 and (2002) 7:352

  45. Ma L (1993) PhD Thesis, University of Georgia, Athens, GA, USA

  46. Knuppe K (1997) PhD Thesis, ETH Zürich, Switzerland

  47. Busch DH (1966) Helv Chim Acta 174–182

  48. Craft JL, Horng Y-C, Ragsdale SW, Brunold TC (2004) J Biol Inorg Chem 9:77–89

    Article  CAS  PubMed  Google Scholar 

  49. Suh MP, Kim HK, Kim MJ, Oh KY (1992) Inorg Chem 31:3620–3625

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Max-Planck-Gesellschaft (R.K.T), by the Fonds der Chemischen Industrie (R.K.T.), and by grants from the National Institutes of Health (GM60329 and GM62542 to M.K.J.), the National Science Foundation (MCB98008857 to M.K.J) and the Swiss National Science Foundation (20-66773 to L.S, R.P, B.J). M.G is a recipient of a scholarship of the Claussen-Simon-Stiftung. We thank Dr. Richard C. Conover for help in fitting the VHVT MCD saturation magnetization data and the reviewers for many insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evert C. Duin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duin, E.C., Signor, L., Piskorski, R. et al. Spectroscopic investigation of the nickel-containing porphinoid cofactor F430. Comparison of the free cofactor in the +1, +2 and +3 oxidation states with the cofactor bound to methyl-coenzyme M reductase in the silent, red and ox forms. J Biol Inorg Chem 9, 563–576 (2004). https://doi.org/10.1007/s00775-004-0549-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0549-9

Keywords

Navigation